BIBLIOGRAPHY
Chapter VI

REFERENCES

1. A. Garcia-Garcia, A. Gregorio, D. Baovida and I. Gulyurtlu “Activated carbons prepared from pine wastes for the uptake of organic compounds from aqueous solution.”
 Abstracts from Adsorption Science & Technology, **2002**, 20, 10

2. Abuzad NS and Nakhla GS “Adsorption capacity of granular activated carbon for phenolic compounds”

3. Activated Carbon
 http://ewr.cee.vt.edu/environmental/teach/wtprimer/carbon/sketcAR

5. Aksu Z, Donmez G. “A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye.”
 *Department of Chemical Engineering Hacettepe University, 06532, Beytepe, Ankara, Turkey.
 Chemosphere, 2003 March; 50(8): 1075-83. zaksu@hacettepe.edu.tr

7. Aldrich Chemical Company, Milwaukee, WI, USA.
 Aldrich chemical catalogue, 1992.
 www.stainsfile.info/stainsfile/dyes/dyes.htm

8. Allali, Hm, Dusart, D. and Mazet, M.” Adsorption of concentrated surfactants from aqueous solutions on activated carbon”

11. Anjali Chahal, “Effects of wastewater of Dyeing units on Human Beings”
2002, 3.

“Adsorption behaviour of Cd, Zn, Ni, and Pb from aqueous solutions by mangifus indica seed shell”.
Indian J. Environ Health, 1998 40 (1) 15-26 (Eng)

Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106, ROC.

15. Annadurai, G. Krishan, M.R.V. “Batch kinetics studies on adsorption of reactive dye using chitosan.” (Department Chemical Engineering, Alagappa College of Tech, Anna University, Chennai, 600 025 India)

16. Alberts, James. J, Weber Marian, F. Evans David W “The effect of pH and contact time on the concentration of As (III) and As (V) in coal ashes systems”.
Environ, Technol Lett. 1988, 9 (1), 63-70 (Eng)

Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey.
armaganl@itu.edu.tr

17A A. Pala, E. Tokat, H. Erkaya “Removal of some reactive dye from textile processing wastewater using powdered activated carbon”

armaganl@itu.edu.tr

(Chemistry Department RSKD College Jaunpur India)
20. Ayala, Julia, Blanco Fransisco, Garcia, Rodriguez, Penelope, Sancho Jose, “Residue fly ash as heavy metals removal material for purification of water.” (Department Materials Science Esanela de minas, Oviedo, Spain 33004) Elsevier Science Ltd., 1998, 77 (II), 1147-54 (Eng)

37. Drozhalina, N.E. and Bulgakova, N.O “Adsorption of phenolic compounds on activated carbon and carbon black from aqueous solutions” Zh. Prikl Khim, 1974, 47, 298

43. El_Geundi Mohammad S. "Adsorption of basic dyes onto natural clay in batch adsorbers, homogenous surface diffusion model"

44. Fang, Chunja, Huanjing Kexue Jinshan Zhonggue, Kexueyuan Shenjia Huoqiang Yanjiu, Zhongxin “Absorbability comparison between dye and phenol on activated carbon.”

45. Fawzi Banat, Sameer Al-Asheh and Deaa Al-Rousan. “A Comparative Study of Copper and Zinc Ion Adsorption on to Activated and Non-activated Date-pits.”

46. G A Lipei."Determination of adsorptive power of coal ash towards Cr(VI)”,
Xinjiang Haini Dist Environ, Monitor Sta, Peoples Republic of China Shanghai Huanjing Kexue, 1989, 8 (9), 31-2 (ch).

Bioresour Technol, 2003 Sep; 89(2): 121-4 vinodgarg@yahoo.com

Univ. California at SantaBarbara Calif, June 23-28, 1991, 58

Department of Biology, Faculty of Arts and Sciences, Cukurova University, 1330 Balcali, Adana, Turkey
J. Hazard Matter, 2004 May 20; 108 (3), 183-8. orgulnaz@cu.edu.tr

52. Gupta V.K. and Ali, I. “Utilization of bagasse fly ash (a sugar industry waste) from the removal of copper and zinc from wastewater.”
Separation and Purification Technology, 2000, 18:131-140.

53. Gurdeep R Chatwal, “Synthetic Dyes”

55. Hilota, Sanae, Seguchi, Kazuyoshi.”Adsorption of metallic ions on wool” (Faculty of Home Science Mukogwa Women’s Univesity, Nishinomiya; Japan (Eng) Pub in Mukogawa Joshi Daigaku Kiyo, Shukumotsues, 1984, 32. 69-76.

61. Hyedoh, Fuminori; Yamaguchi, Masahide; Watanabe Yoshiki ; Kawakami, Yashuhiko; Tasushima, Hirofumi; Ueki, Ayako”Adsorption of acid or basic dyes on asbestos having charged parts” (Dep. Hyg., Kawasaki Med. Sch. Kurashiki, Japan 701-01) Sangyo (Japan). 1994, Igaku 36 (4), 211-12.

65. Janos P, Buchtova H, Ryznarova M “Sorption of dyes from aqueous solutions on to fly ash.” Faculty of Environmental studies, University of Jan Evangelista Purkyne, Kralova Vysina 7, 40096 Usti nad Labem, Czech Republic. Water Res. 2003 Dec; 37(20): 4938-44. janos@fzp.uiep.cz

306
75. Kanan, N. Srinivasan, T. “Studies on the adsorption of Copper by low cost carbonaceous adsorbent.”
(Post-graduate department of Chemistry, Ajya Nadar Janki Ammai College (Antonomous) Sivarsaki, 626 124 India.

76. Kaneka, Shaji, Saitosh, Hiwshi, Maejima, Yoshio, Nakamura, Motoshi “Adsorption characteristics of organic dyes in aqueous solution on silica containing mixed –oxide gels.”

77. Katoaka, Katsyuki, “Granular adsorbents and process for removal of phosphorous from water.”

78. Khattri S.D. Singh M.K. J “Removal of basic dyes from aqueous solution using sone sand as an adsorbent.”
(Department of Chemistry Faculty of Science BHU Varanasi, 221.005 India)
Indian Chemical Society 1999, 76(8), 389-391 (Eng).

(Department Chemistry, Faculty of Science BHU Varanasi 22105 India.) Indian J. Chem. Technol. National Institute of Science Communications, CSIR. 1999, 6(2), 112-161 (Eng).

Department of Chemistry Faculty of Science BHU Varanasi 221005, India)

(Natl. Research Institute. Pollution, Resource, Kawaguchi, Japan) Kojai (Japan)
1979, 14 (4) 205-13

Department of Environmental Engineering, Gebze Institute of Technology, 41400 Kocaeli, Gebze, Turkey
Bioresour Technol, 2004 Feb. 91 (3), 317-21. kobya@gyte.edu.tr

83. Koltesev, A.V. Korolev, yu G. and Syskov, K.I.”Adsorption of phenols from dilute aqueous solutions”
Deposited Doc. Viniti, 1975, 5, 1627..

84. Koparal AS, YavuzY, Bakir Oguveren U. “Electroadsorption of acilan blau dye from textile effluents by using activated carbon-perlite mixtures.” Environmental Application and Research center, Department of Environmental engineering, Anadolu University, Eskisehir, Turkey.
Water Environ Res. 2002 Nov-Dec; 74(6) 1521-5 askopara@anadolu.edu.tr

307
(Chemistry Research Centre GTP College, Nandurkar, 425 412 India.)
Journal of India. Pollution Control 2001, 17(2), 289-95 (Eng.) Environ Media.

89. Lin S.H.J. “Removal of Disperse Dye Red 60 on several adsorbents including GAC”

93. M.S. Chiou, H.Y.Li, “Equilibrium and kinetic modeling of adsorption of reactive dye on cross linked chitosan beads

96. Manju, G.N., Anirudhan, T.S. “Use of coconut fiber pith based pseudo– activated carbon for Cr (VI) removal.” (Department of Chem. University of Kala, Thirvantha puram, 695 581 India)
97. McKay, G. “The adsorption of dyestuffs from aqueous solutions using the activated carbon adsorption model to determine breakthrough curves.”

97A Mckay G, SJ Allen, IA. Mc Convry and MS Otterman “Transport Process in the sorption of colored ions by pear particles”,

Dept. of Chemical Engineering, Panjab University, Chandigarh 1997, 2-3, 12-18.

101. Mittal A.K. and VenkoVachar, C."Adsorption of phenols on porous and non porous carbons-nature of carbon surface"

102. Miyahara M and Okazaki M “Removal of aromatic organic compounds from aqueous solution on activated carbon using batch technique”

104. N.S. Vijayaraghavan “Environmental unit in Textile Industry”

105. Naito, Harusuke “Method and agents for removal of dyes from wastewater”
Jpn. Kokai Tokkyo Koho J P 1005, 750 (98 05, 750)

110. O. Marmagne (Research Engineer), C. Coste (Manager), “Colour removal from Textile Plant Effluents.” *Industrial technical Department, Degrement S.A., Cedex, France Extracted from American Dye Stuff Reporter, April 1996.*

117. Punjab Pollution Control Board “Comprehensive Guidelines On Pollution Clearance
For Industrial Plants” 1998,13,27-28

118. Puri, B.R., Bhardwaj, S.S. and Gupta U.”Adsorption of phenol from aqueous
solutions by activated carbons in relation to their specific surface areas”

119. R.D. Lillie, Conn’s, Biological Stains
Williams & Wilkins, Baltimore, MD., USA.
www.stainsfile.info/stainsfile/dyes/dyes.htm

120. R. Saliba, H Gauthier, R. Gauthier and M. Petit-Ramel “The Use of Eucalyptus Barks
for the Adsorption of Heavy Metal Ions and Dyes”
Adsorption Science & Technology –Editor F.G.R. Gimblett Published 10 times a

green PLS dye from textile industrial waste through low cost carbons.” Government
Arts College, Virudhachalam, India.

122. Rajeshwarisivaraj, Subburam V. “Activated parthenium carbon as an adsorbent for
the removal of dyes and heavy metal ions from aqueous solution.” Department of
Environmental Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
Eioresour Technol 2002 Nov; 85(2):205-6. rajeshwarisivaraj@mailcity.com

Shipra Publ Delhi 1966, 213.

125. Rashed, Iaar Al-Alm, El-Komy, MA, Al-Saray, A A Khalid, Metawally MA, “Color
removal from textile effluents by adsorption on soot.”
Fac, eng. University – Al- Mansoura, Egypt) (Mansoura Egypt)
J. Environ Science, 1993, 6, 121-44 (Eng).

125A Rama Chhabra, “mass transfer zone –transfer of dye onto granular activated carbon”
M.E. (Chem.) Thesis, Panjab University, Chandigarh, India.
1998.

125B Rao, M, Parwate, A.V., Bhole, A.G. “ Uptake of Ni from aqueous solution by
adsorption using low cost adsorbents.” Civil Engg. Deptt. College of Engg. Badera,
444701 India
Pollution research 2001, 20(4) 669-75 (Eng.) Environ media.
126. Reddad, Zacaria, Gereste Claire, Andres, Yves, Le Cloirec, Pierre C. “Adsorption of several metal ions onto a low cost biosorbent: Kinetic and equation studies.” Ecoleds Mines De Nantes, GEPEA, 44307 Nantes, Fr.
Environmental Science and Technology, American Chemical Society. 2002, 3619, 2067-2073 (Eng)

128. Robinson, T., Chandran, B., and Nigam, P. “Removal of dyes from synthetic textile dye effluent by biosorption on apple pomace and wheat straw.” School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
Water Res., 2002 June; 36(11): 2824-30 p.nigam@ulst.ac.uk

129. Robinson, T., Chandran, B., and Nigam, P. “Removal of dyes from an artificial textile dye effluent by two agricultural waste residues, corn cob and barley husk.” School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.

134. Sciban, Marina B., Klasnja, Mile T., “Adsorption isotherm of a (Cr^6+) from water on some natural materials.” Technoloski, Fak, university U Novam Sadu, 21000, Novisad, Yugoslavia University of Novisad, Faculty of Technology.
Acta period, Technology, 2000, 31 (PtB), 431-36 (Serbian).

 Forest Products Research Institute, Asahikawa, Japan, 071 wood, Sa Technol.
 Springer Verlay 1997, 31 (6), 441-47 (Eng).

 Department of Environmental Sciences, PSG College of Arts and Science, Coimbatore, Tamil Nadu, India.

139. Shukla, Ramji and Singh, Anju. “Adsorptive removal of Malachite Green from dyeing wastewater by a combination of chitin,activated charcoal and alumina.”

140. Singh, Vinay K, Tiwari, Pren N, “Removal and recovery of Cr (VI) from Industrial wastewater.”

141. Sivaraj R, Namisivayam C, Kadirvelu K. “Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions.”
 Dept. of Environmental Sciences, Bharathiar Univ, Coimbatore, 641046, Tamil Nadu, India. rajeshwarisivarayal@mailcity.com
 Waste Manag. 2001; 21 (1) : 105-10.

142. Smolin SK Timosheuka MN and Klimenko HA “Adsorption of ionic surfactants from their aqueous solutions”
 Khim Technol Vody, 1991, 13, 495

143. Sojka-Ledakowicz, Jaduiga; Wcislo, Pawel; Machnowski,"Adsorption of heavy metals from dye solutions onto composite filters"

 In proceedings of 35th Industrial Waste Conference, Purdue Univ., Lafayette, Ind., 1974, Vol. 35, 186

146. Subramaniam, E.; Muthuswamy, M; Rajan, K, Palanivel.” Adsorptive removal of Direct Blue 2B from textile wastewater by crosslinked polyvinylpyrrolidine and wood charcoal”.

147. Sumanjit, Prasad, N. “Adsorption of dye on rice husk ash.” Department of Pharmaceutical Science, GNDU Amritsar, 143005, India)

149. Textile Committee (GOI Ministry & Textiles) “Guidance for the manufacture of Eco-Friendly Textiles”

152. Vidic R D, Suidan M T and Brenner RC “Effect of molecular oxygen on adsorption capacity of GAC for phenolic compounds”

156. Waranusantigul P, Pkethitiyook P, Kruatrachue M, Upatham ES. “Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza)”

Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand. Environ Pollut. 2003; 125(3):385-92.

157. W.,Pittman,C.U. Jr. and Gardener, S.D.

Carbon 33 597 (1995)

158. Wasif A I and Dr.Kone C D. “Textile Processing and Environmental Consequences”

Textile & Engg. Institute. IchaiKaranji Abstract pg1-15

159. Whitaker and Hillock, “Dyeing with Coaltar Dyestuff”

160. www.accepta.com “Water efficiency in the textile and leather industry accepta – leading echemical procurement”

email info@accepta.com
161. Yoshida, Hiroyuki; Takamori, Takashi, “Adsorption in the Water environment and Treatment process”

163. Z. Aksu “A comparative study on biosorption characteristics of some yeasts for Ramazol Blue reactive dye”.

164. Z. Aksu, S. Tezer “Equilibrium and kinetics medeling of biosorption of Remozol BlackB by rhizopodus arrhizus in a batch system :effect of temperature”.