CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>I</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>VI</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>VIII</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XV</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XXV</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>XXVIII</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

2. LITERATURE REVIEW

2.1 Ductile cast iron – evolution

2.1.1 Advent of austempered ductile iron

2.2 Development of ADI

2.2.1 Austenitization process

2.2.1.1 Austenitization parameters

2.2.1.2 Austenitization kinetics

2.2.1.3 Microstructure control during austenitization

2.2.2 Austempering process

2.2.2.1 Austempering parameters

2.2.2.2 Austemperability

2.2.2.3 Austempering thermodynamics

2.2.2.4 Austempering transformations and processing window

2.2.2.5 Austempering kinetics

2.2.3 Role of alloying elements

2.2.3.1 Influence on austenitization

2.2.3.2 Influence on austempering process

viii
2.2.3.3 Influence of segregation of alloying elements 34

2.3 Microstructural evolution in ADI 36
 2.3.1 Effect of austenitization temperature 37
 2.3.2 Effect of austenitization time 38
 2.3.3 Effect of austempering temperature 38
 2.3.4 Effect of austempering time 39

2.4 Mechanical properties 39
 2.4.1 0.2% Proof stress 40
 2.4.2 Ultimate tensile strength 42
 2.4.3 Impact strength 44
 2.4.4 Percentage elongation 46

2.5 Machining 47
 2.5.1 Machining ductile cast iron 47
 2.5.2 Machinability factors 50
 2.5.2.1 Cutting forces 51
 2.5.2.2 Cutting speed 52
 2.5.2.3 Tool wear 52
 2.5.2.4 Surface integrity 53
 2.5.3 Introduction to milling 54
 2.5.4 Earlier studies on ADI machinability 54
 2.5.5 Effects of alloying elements on machinability of ADI 57

2.6 Electrical discharge machining - introduction 57
 2.6.1 Basic principle of EDM process 58
 2.6.2 Mechanism of material removal in EDM process 59
 2.6.3 EDM process parameters 60
 2.6.4 Performance characteristics of EDM process 61
 2.6.5 Applications of EDM 61
2.7 Wear study

2.7.1 Wear mechanisms

2.7.1.1 Adhesive wear
2.7.1.2 Abrasive wear
2.7.1.3 Fatigue wear
2.7.1.4 Corrosion wear

2.7.2 Variables influencing wear

2.8 Wear of ADI

2.8.1 Coefficient of friction
2.8.2 Worn out surfaces

2.9 Problem formulation

3. EXPERIMENTAL PROCEDURES

3.1 Melting and casting of DI s

3.2 Base composition and characterization of DI s

3.3 Sample preparation

3.4 Heat treatment

3.4.1 Austenitization
3.4.2 Austempering

3.5 Designation of the samples

3.5.1 Study of austenitization process
3.5.2 Study of austempering process

3.6 Details of measurement procedures

3.6.1 Metallography
3.6.2 Hardness test

3.6.3 X-ray diffraction to find optimum austenitization temperature and time
3.6.4 X-ray diffraction study of austempering
3.6.5 Tensile testing
3.6.6 Impact testing 85
3.6.7 Machinability analysis 85
 3.6.7.1 Cutting force measurement 85
 3.6.7.2 Surface roughness measurements 86
 3.6.7.3 Machinability index 86
3.6.8 Wear performance analysis 86
3.7 Design of experiments and analysis for EDM process 87
 3.7.1 Experimental design and analysis - introduction 87
 3.7.2 Taguchi philosophy 88
 3.7.3 Experimental design strategy 89
 3.7.4 Procedure of experimental design 90
 3.7.4.1 Establishment of objective function 90
 3.7.4.2 Selection of factors to be evaluated 91
 3.7.4.3 Selection of number of levels 91
 3.7.4.4 Degree of freedom 92
 3.7.4.5 Selection of appropriate orthogonal array 92
 3.7.4.6 Assignment of parameters 92
 3.7.4.7 Parameters for execution of experiments 93
 3.7.4.8 Analysis of results 94
 3.7.4.8.1 Signal-to-noise ratio 94
 3.7.4.8.2 Signal-to-noise ratio for response characteristics 94
 3.7.4.8.3 Measurement of F-value of Fisher ratio 94
 3.7.4.8.4 Computation of average performance 95
 3.7.4.8.5 Analysis of variance 95
4. STRUCTURAL CHANGES IN ADIs AND HEAT TREATMENT 97-123
 4.1 Analysis of austenitization 97
4.1.1 Carbon content of matrix
4.2 Evolution of ADI microstructure
 4.2.1 Microstructure development with austempering time
4.3 Microstructural changes with austempering temperature and time
4.4 Structural changes with austempering temperature and time
 4.4.1 Variation in volume fraction of high carbon austenite
 with austempering temperature and time
 4.4.2 Variation of carbon content of austenite
 with austempering temperature and time
 4.4.3 Variation of \(X_C\) with austempering temperature and time
4.5 Ferrite particle size
4.6 Summary

5. AUSTEMPERING KINETICS AND PROCESSING WINDOW
 5.1 Kinetics of austempering process
 5.2 Processing window
 5.3 Summary

6. MECHANICAL PROPERTIES IN PROCESSING WINDOW
 6.1 Hardness
 6.2 Tensile properties
 6.2.1 Ultimate tensile strength
 6.2.2 0.2 % Proof stress
 6.2.3 Percent elongation
 6.3 Impact strength
 6.4 Relation of mechanical properties with structural parameters
 6.4.1 0.2% proof stress and UTS vs. hardness
 6.4.2 Effect of volume % high carbon austenite on
 hardness, 0.2% proof stress/UTS and % elongation
6.4.3 Effect of ferrite particle size, d_a on hardness, 0.2% proof stress, UTS and % elongation

6.5 Mathematical relationship of mechanical properties with structural parameters

6.6 Summary

7. MACHINABILITY

7.1 Cutting force

7.2 Surface roughness

7.3 Machinability index

7.4 Summary

8. EDM PROCESS IN PROCESSING WINDOW

8.1 Study of MRR

8.1.1 Results for MRR and analysis for austempering temperature of 270°C

8.1.1.1 Selection of optimum levels

8.1.2 Results for MRR and analysis for austempering temperature of 420°C

8.1.2.1 Selection of optimum levels

8.1.3 Microstructural observations of EDMed surface under highest MRR

8.2 Study of surface roughness

8.2.1 Results for SR and analysis for austempering temperature of 270°C

8.2.1.1 Selection of optimum levels

8.2.2 Results for surface roughness and analysis for austempering temperature of 420°C

8.2.2.1 Selection of optimum levels

8.2.3 Microstructural observations of EDMed surface under lowest surface roughness

8.3 EDM sub surface study

8.4 Summary

9. WEAR PERFORMANCE