TABLE OF CONTENTS

1. INTRODUCTION 1-6
2. REVIW OF LITERATURE 7-55
 2.1. Peptic Ulcer 7-30
 2.1.1. Pathophysiology of peptic ulcer 7-8
 2.1.2. Epidemiology of peptic ulcer 8-9
 2.1.3. Factors associated with peptic ulcer 9-13
 2.1.3.1. Acid secretion in ulcer disease 9-10
 2.1.3.2. Medical management of peptic ulcer disease by acid suppression 10-11
 2.1.3.3. SAIDs in peptic ulcer disease 11-11
 2.1.3.4. Smoking and cocaine and peptic ulcer disease 11-12
 2.1.3.5. Role of stress in the development of peptic ulcer 12-12
 2.1.3.6. H. pylori infection predisposes to peptic ulceration 12-13
 2.1.4. Pathogenic determinants of H. pylori 13-15
 2.1.5. Mechanisms of gastroduodenal mucosal damage by H. pylori 16-18
 2.1.5.1. Local effects 16-16
 2.1.5.2. Effect on immune response 16-16
 2.1.5.3. Effect on acid secretion 16-16
 2.1.5.4. Effect on duodenal HCO₃⁻ secretion 16-16
 2.1.6. Tests for H. pylori infection 19-20
 2.1.6.1. Serologic test 19-19
 2.1.6.2. Urea breath test 19-19
 2.1.6.3. Histologic test 20-20
 2.1.6.4. Rapid urease test 20-20
 2.1.6.5. Bacterial culture method 20-20
 2.1.7. Epidemiology of H. pylori Infection 20-22
 2.1.7.1. Helicobacter in the developing world 20-21
 2.1.8. Treatment of H. pylori Infection 22-25
 2.1.9. Novel formulations for H. pylori therapy 25-30
 2.1.9.1. Floating and gastroretentive drug delivery systems for H. Pylori 25-27
 2.1.9.2. Mucoadhesive gastroretentive drug delivery systems 27-29
 2.1.9.3. Drug delivery systems with specific interaction 29-30
 2.2. A review on gastroretentive drug delivery systems 30-45
 2.2.1. Floating drug delivery system (FDDS) 32-33
 2.2.2. Single vs. multiple unit FDDS 33-33
 2.2.3. Intragastric drug delivery systems - the research perspective 34-39
 2.2.4. Classification of microbeads/microparticles 39-45
 2.2.4.1. Effervescent floating microparticles 39-40
 2.2.4.2. Non effervescent floating micro particles 40-45
 2.3. Evaluation of micro particulate delivery systems 46-55
 2.3.1. Mechanical strength 46-46
 2.3.2. Total moisture content 46-46
 2.3.3. Micromeritic properties 46-47
 2.3.3.1. Apparent particle density 46-46
 2.3.3.2. Roundness 47-47
 2.3.3.4. Particle size analysis 47-47
 2.3.3.5. Measurement of flow properties 47-48
2.3.4. *In vitro* buoyancy test 49-51
2.3.4.1. Agitating glass flask/bottle method 49-49
2.3.4.2. Agitating beaker method 49-50
2.3.4.3. USP Paddle method 50-51
2.3.5. Drug content and entrapment efficiency 51-51
2.3.6. Bead water uptake and equilibrium swelling studies 51-52
2.3.7. Drug release studies and kinetics of dissolution 52-53
2.3.7.1. Zero order kinetics model 52-52
2.3.7.2. First order kinetics model 52-53
2.3.7.3. Higuchi model 53-53
2.3.7.4. Korsmeyer Peppas model 53-53
2.3.8. *In vivo* gastro retention studies on the microbeads 54-55

3. DRUG PROFILES 57-64

3.1. Clarithromycin 57-60
3.1.1. Synonym 57-57
3.1.2. Chemical name, molecular weight and CAS number 57-57
3.1.3. Description 57-57
3.1.4. Pharmacokinetics 58-59
3.1.5. Dose 59-59
3.1.6. Ultraviolet spectrum 59-59
3.1.7. Infra red spectrum 59-59
3.1.8. High performance liquid chromatography 60-60

3.2. Pantoprazole sodium sesquihydrate 61-65
3.2.1. Synonym 61-61
3.2.2. Chemical name, Molecular weight and CAS number 61-61
3.2.3. Description 61-61
3.2.4. Pharmacokinetics 61-63
3.2.5. Pharmacodynamics 63-64
3.2.6. Dose 64-65
3.2.7. Ultraviolet spectrum 65-65
3.2.8. Infra red spectrum 65-65
3.2.9. High performance liquid chromatography 65-65

4. POLYMER PROFILES 67-82

4.1. Chitosan 67-71
4.1.1. Nonproprietary names 67-67
4.1.2. Synonyms 67-67
4.1.3. Chemical name and CAS registry number 67-67
4.1.4. Description 67-67
4.1.5. Empirical formula and molecular weight 68-68
4.1.6. Structural Formula 68-68
4.1.7. Functional category 68-68
4.1.8. Applications in pharmaceutical formulation or technology 68-69
4.1.9. Description 69-69
4.1.10. Typical properties 69-71
4.1.11. Stability and storage conditions 71-71
4.1.12. Incompatibilities 71-71
4.1.13. Safety 71-71

4.2. Sodium alginate 72-75
4.2.1. Nonproprietary names 72-72
4.2.2. Synonyms 72-72
4.2.3. Chemical name and CAS registry number 72-72
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.4.</td>
<td>Empirical formula and molecular weight</td>
<td>72-72</td>
</tr>
<tr>
<td>4.2.5.</td>
<td>Structural formula</td>
<td>72-72</td>
</tr>
<tr>
<td>4.2.6.</td>
<td>Functional category</td>
<td>72-72</td>
</tr>
<tr>
<td>4.2.7.</td>
<td>Applications in pharmaceutical formulation or technology</td>
<td>72-73</td>
</tr>
<tr>
<td>4.2.8.</td>
<td>Description</td>
<td>73-73</td>
</tr>
<tr>
<td>4.2.9.</td>
<td>Typical properties</td>
<td>74-74</td>
</tr>
<tr>
<td>4.2.10.</td>
<td>Stability and storage conditions</td>
<td>74-75</td>
</tr>
<tr>
<td>4.2.11.</td>
<td>Incompatibilities</td>
<td>75-75</td>
</tr>
<tr>
<td>4.2.12.</td>
<td>Method of Manufacture</td>
<td>75-75</td>
</tr>
<tr>
<td>4.2.13.</td>
<td>Safety</td>
<td>75-75</td>
</tr>
<tr>
<td>4.3.</td>
<td>Pectin (Low Methoxy)</td>
<td>76-78</td>
</tr>
<tr>
<td>4.3.1.</td>
<td>Nonproprietary name</td>
<td>76-76</td>
</tr>
<tr>
<td>4.3.2.</td>
<td>Synonyms</td>
<td>76-76</td>
</tr>
<tr>
<td>4.3.3.</td>
<td>Chemical name and CAS registry number</td>
<td>76-76</td>
</tr>
<tr>
<td>4.3.4.</td>
<td>Empirical formula and molecular weight</td>
<td>76-76</td>
</tr>
<tr>
<td>4.3.5.</td>
<td>Structural formula</td>
<td>76-77</td>
</tr>
<tr>
<td>4.3.6.</td>
<td>Functional category</td>
<td>77-77</td>
</tr>
<tr>
<td>4.3.7.</td>
<td>Applications in pharmaceutical formulation or technology</td>
<td>77-78</td>
</tr>
<tr>
<td>4.3.8.</td>
<td>Description</td>
<td>78-78</td>
</tr>
<tr>
<td>4.3.9.</td>
<td>Typical properties</td>
<td>78-78</td>
</tr>
<tr>
<td>4.3.10.</td>
<td>Stability and storage conditions</td>
<td>78-78</td>
</tr>
<tr>
<td>4.3.11.</td>
<td>Method of manufacture</td>
<td>78-78</td>
</tr>
<tr>
<td>4.3.12.</td>
<td>Safety</td>
<td>78-78</td>
</tr>
<tr>
<td>4.4.</td>
<td>Eudragit (S 100)</td>
<td>79-82</td>
</tr>
<tr>
<td>4.4.1.</td>
<td>Nonproprietary names</td>
<td>79-79</td>
</tr>
<tr>
<td>4.4.2.</td>
<td>Synonyms</td>
<td>79-79</td>
</tr>
<tr>
<td>4.4.3.</td>
<td>Chemical name and CAS registry number</td>
<td>79-79</td>
</tr>
<tr>
<td>4.4.4.</td>
<td>Empirical formula and molecular weight</td>
<td>79-79</td>
</tr>
<tr>
<td>4.4.5.</td>
<td>Structural formula</td>
<td>80-80</td>
</tr>
<tr>
<td>4.4.6.</td>
<td>Functional category</td>
<td>80-80</td>
</tr>
<tr>
<td>4.4.7.</td>
<td>Applications in pharmaceutical formulation or technology</td>
<td>80-80</td>
</tr>
<tr>
<td>4.4.8.</td>
<td>Description</td>
<td>80-81</td>
</tr>
<tr>
<td>4.4.9.</td>
<td>Solubility</td>
<td>81-81</td>
</tr>
<tr>
<td>4.4.10.</td>
<td>Stability and Storage Conditions</td>
<td>81-81</td>
</tr>
<tr>
<td>4.4.11.</td>
<td>Incompatibilities</td>
<td>81-81</td>
</tr>
<tr>
<td>4.4.11.</td>
<td>Safety</td>
<td>81-81</td>
</tr>
<tr>
<td>5.</td>
<td>AIMS AND OBJECTIVES</td>
<td>83-86</td>
</tr>
<tr>
<td>6.</td>
<td>MATERIALS AND METHODS</td>
<td>87-90</td>
</tr>
<tr>
<td>6.1.</td>
<td>List of chemicals</td>
<td>87-88</td>
</tr>
<tr>
<td>6.2.</td>
<td>List of equipments</td>
<td>88-89</td>
</tr>
<tr>
<td>6.3.</td>
<td>Animals</td>
<td>90-90</td>
</tr>
<tr>
<td>6.4.</td>
<td>METHODS</td>
<td>91-106</td>
</tr>
<tr>
<td>6.4.1.</td>
<td>Preformulation studies</td>
<td>91-91</td>
</tr>
<tr>
<td>6.4.1.1.</td>
<td>Characterization of clarithromycin and pantoprazole</td>
<td>91-91</td>
</tr>
<tr>
<td>6.4.2.</td>
<td>Analysis of drugs and preparation of calibration curves</td>
<td>92-93</td>
</tr>
<tr>
<td>6.4.2.1.</td>
<td>Analysis of clarithromycin by HPLC</td>
<td>92-93</td>
</tr>
<tr>
<td>6.4.2.2.</td>
<td>Preparation of calibration curve of PSS by UV spectrophotometry93-93</td>
<td></td>
</tr>
<tr>
<td>6.4.3.</td>
<td>Preparation of floating chitosan microbeads of CL</td>
<td>93-94</td>
</tr>
<tr>
<td>6.4.3.1.</td>
<td>Product optimization of CLCH beads by factorial design</td>
<td>94-95</td>
</tr>
<tr>
<td>6.4.4.</td>
<td>Preparation of Eudragit S100 enteric coated polymeric microbeads of PSS</td>
<td>95-97</td>
</tr>
</tbody>
</table>
6.4.4.1. Product optimization of PSS loaded Eudragit S100 coated Sodium alginate, LM pectin and combination of alginate and pectin beads using 3^2 full factorial design 97-98

6.4.5. Drug excipients interaction studies 98-99

6.4.5.1. DSC Analysis 98-99

6.4.5.2. FTIR Analysis 99-99

6.4.5.3. XRD analysis 99-99

6.4.6. Entrapment efficiency or drug content 99-100

6.4.6.1. Entrapment efficiency in clarithromycin floating microbeads 99-99

6.4.6.2. Entrapment efficiency in Eudragit coated PPS microbeads 99-100

6.4.7. Scanning electron microscopy 100-101

6.4.8. Micromeritics 100-100

6.4.8.1. Apparent particle density 100-101

6.4.8.2. Particle size 101-101

6.4.8.3. Particle size distribution 101-101

6.4.9. Buoyancy Test 101-101

6.4.10.1. Clarithromycin loaded floating chitosan microbeads 101-102

6.4.10.2. PSS loaded alginate, pectin, and combination of alginate and pectin beads 102-102

6.4.11. Drug Release Kinetics 102-102

6.4.12. Long Term Stability Studies100-100 102-102

6.4.13. In situ evaluation and comparative estimation of drug in the gastric mucosa and blood of Wistar rats 102-103

6.4.14. Pharmacokinetic studies 104-104

6.4.15. HPLC analysis of blood samples 104-105

6.4.15.1. HPLC analysis of blood samples of clarithromycin formulations 104-105

6.4.15.2. HPLC analysis of blood samples of pantoprazole formulations 105-105

6.4.16. Statistical analysis 105-105

7. RESULTS AND DISCUSSIONS 107-219

7.1. Preformulation studies 107-115

7.1.1. Characterisation of clarithromycin and pantoprazole 107-115

7.2. Analysis of drugs and preparation of calibration curves 115-119

7.2.1. HPLC analysis of clarithromycin 115-117

7.2.2. UV spectrophotometry of pantoprazole 117-119

7.3. Formulations of clarithromycin loaded chitosan floating beads 119-119

7.3.1. The factorial design of CLCH formulations 119-123

7.4. Formulations of Eudragit coated PSS loaded sodium alginate beads 124-124

7.4.1. The factorial design of Eudragit PSS sodium alginate formulations 125-128

7.5. Formulations of Eudragit PSS Pectin beads 128-128

7.5.1. Factorial design of Eudragit coated PSS LM pectin beads 129-131

7.6. Formulations of Eudragit PSS alginate LM pectin beads 132-132

7.6.1. Factorial design of PSS loaded Eudragit coated alginate and LM pectin beads 133-135

7.7. Drug polymer interactions 136-179

7.7.1. FTIR Analysis of clarithromycin formulations 135-140

7.7.2. FTIR Analysis of Eudragit coated pantoprazole formulations 141-164
7.7.3. DSC Analysis of clarithromycin formulations 165-169
7.7.4. DSC analysis of Eudragit coated PSS alginate formulation 169-171
7.7.5. DSC analysis of Eudragit coated PSS LM pectin formulation 171-172
7.7.6. DSC analysis of Eudragit coated PSS alginate and LM pectin formulation 173-174
7.7.7. XRD analysis of clarithromycin formulation 174-177
7.7.8. XRD analysis of Eudragit coated PSS formulations 177-179
7.8. Percentage entrapment of clarithromycin in chitosan formulations 179-180
7.9. Percentage entrapment of PSS in sodium alginate, pectin and sodium alginate and pectin formulations 180-181
7.10. Buoyancy of clarithromycin chitosan beads 182-182
7.11. Apparent particle density of clarithromycin chitosan beads 182-183
7.12. Apparent particle density of the sodium alginate, pectin, alginate and pectin beads 183-184
7.13. Particle size and particle size distribution of clarithromycin loaded chitosan beads 185-185
7.14. The particle size distribution of Eudragit coated PSS alginate beads 186-186
7.15. The particle size distribution of Eudragit coated PSS pectin beads 187-187
7.16. The particle size distribution of Eudragit coated PSS alginate pectin beads 188-188
7.17. Scanning Electron microscopy clarithromycin loaded chitosan beads 189-192
7.18. Scanning Electron microscopy of Eudragit coated PSS alginate beads 193-194
7.20. Scanning Electron microscopy of Eudragit coated PSS alginate LM pectin beads 196-197
7.21. Dissolution studies of clarithromycin formulations 198-200
7.22. Dissolution studies of pantoprazole formulations 201-208
7.23. Release kinetics of clarithromycin formulations 209-209
7.24. Release kinetics of pantoprazole formulations 210-212
7.25. Stability studies as per ICH guidelines 213-214
7.27. Comparative estimation of clarithromycin in the gastric mucosa and blood of wistar rats 216-217
7.28. Pharmacokinetics of the formulations 218-219
8. SUMMARY AND CONCLUSIONS 221-226
9. BIBLIOGRAPHY 227-269
10. APPENDIX i-viii
A-I. List of Figures i-iv
A-II. List of Tables v-vi
A-III. Abbreviations vii-vii