Summary

The thesis comprises of five chapters. Chapter-1 deals with the introduction to heterocyclic compounds and their biological and pharmacological activity besides other applications of oxoindolines, quinoxalines, isoxazoles, and 1,2,4-triazoles. Chapter-2 consists of general methods of synthesis, and spectral characteristics of oxoindolines and study of their antimicrobial activities. Chapter-3 deals with the synthesis and characterization of Quinoxaline 1,4 di-N-oxides and Investigations of anticancer activity beside microbial activity. In Chapter-4 the synthesis, characterization and study of molecular docking activity of chromano isoxazoles is presented. Chapter-5 describes the synthesis and characterization of 1,2,4-triazoles besides a study of anti-inflammatory and antimicrobial activity.

Chapter-I: chemistry of Heterocyclic compounds (Oxoindolines, Quinoxalines, & Triazoles, Isoxazoles) and their properties.

Heterocyclic compounds are widely distributed in nature and important activities are associated with this class of substances. The paramount importance of heterocyclic compounds in natural product chemistry and pharmacology constantly drive the search for new methods for the construction of heterocyclic unit viz. Oxoindolines, Quinoxalines, Isoxazoles and Triazoles & the chemistry is briefly described in sections A,B,C,&D respectively.
Sec-A: Chemistry of OxoIndolines:-

Oxoindolines are aromatic heterocyclic compounds, which possess wide variety of activities viz., antimicrobial, antiviral, antifungal, anti-inflammatory, analgesic activity etc., some of oxoindolines are used as new apoptosis inducers which, play a crucial role in normal cell development and tissue homeostasis. Apoptosis is used by organism to control their cell numbers and to eliminate unneeded or damaged cells. A large number of oxoindoline derivatives have been incorporated into a wide variety of chemotherapeutical agents which is correlated to their apoptosis inducing ability (as apoptosis inducers or potential anticancer agents).

Sec-B: Chemistry of Quinoxalines:

A quinoxaline, also called a benzopyrazine, is a heterocyclic compound containing a ring complex made up of benzene ring and a pyrazine ring. It is isomeric with other naphthyridines including quinazoline, phthalazine and cinnoline. Quinoxalines are used as dyes, pharmaceuticals and antibiotics such as echinomycin, levomycin and actinoleutin. Some studies were carried out in order to explore the antitumoral properties of quinoxaline compounds. Recently, quinoxalines and its analogs have been investigated as the catalyst ligands. The wide spread activity of quinoxaline 1,4 di-N-oxides(QdNO’s) can be associated with generation of free radicals. QdNO’s were first prepared as potential antagonists of vitamin K activity, but such antagonism has never been demonstrated. They have been reported for their application in dyes, efficient electrolumincient materials, and organic semiconductors.
Sec-C: Chemistry of Isoxazoles:

Isoxazoles possess interesting medicinal properties and have industrial applications. Many biologically active isoxazoles and reduced isoxazole derivatives have been reported viz., isocarboxzid, useful in psychotherapy and isoxazole steroids show anabolic activity. Isoxazole derivatives were used as inhibitors for ulcers, lipoygenase, acetyl choline esterase. They exhibit a variety of pharmacological activities like hypoglycemic, analgesic, antiarrythmic, antitumor etc., spiro isoxazolines and benzofuroisoxazoles were used as anticonvulsant. Isoxazolyl naphthoquinones act as potential trypanocidal and antibacterial agents. Heterolyptic tetraorganotins have insecticidal properties. Some new dyestuff’s containing isoxazole moieties were found to give excellent results when applied on wool, polyester and their blend. Some novel isoxazoles like Broxaterol show marked bronchodialating activity. Some Isoxazole derivatives are used in liquid crystalline mixtures, which are useful for display devices of immerse mode.

Sec-D: Chemistry of 1,2,4-triazoles:

The chemistry of 1,2,4-triazoles and their fused heterocyclic derivatives has received considerable attention owing to their synthetic and effective biological importance. A large number of 1,2,4-triazole containing ring system have been incorporated into a wide variety of therapeutically interesting drug candidates including anti-inflammatory, CNS stimulants sedatives, antianxiety, antimicrobial agents and atimycotic activity such as fluconazole, intraconazole, voriconazole. Also there are
known drugs containing the 1,2,4-triazole group eg., Triazolam, Alprazolam, Etizolam, and Furaclylin. Moreover, sulphur containing heterocycles represent an important group of sulphur compounds that are promising for use in practical applications. Among these heterocycles, the mercapto- substituted 1,2,4-triazole ring systems have been well studied and so far a variety of biological activities have been reported for a large number of their derivatives, viz., antibacterial, antifungal, antitubercular, antimycobacterial, anticancer, diuretic and hypoglycemic properties. Triazole derivatives are showing very promising and excellent therapeutic effectiveness. The major activities exhibited by these derivatives include insecticidal, antifungal, antiviral, antibacterial, sedative, hypnotic, anticonvulsant and anti-inflammatory action. Either as single heterocyclic derivatives or in fusion with the other cycles, these heterocyclic is emerging as the most explored center to obtain clinically significant compounds. The highly explored isomers of triazole being the 1,2,4-triazoles.

Isatin (Indole 2,3-dione) is an endogenous compound, useful for the synthesis of large variety of heterocyclic compounds. The synthetic versatility of Isatin has stemmed from the interest in the biological and pharmacological properties of its derivatives. Prompted by the biological properties of oxoindoline derivatives, it was decided to
synthesize various oxoindoline derivatives of isatin with aryl substrates and to screen for their Antimicrobial activities. The oxoindoline derivatives were synthesized by condensing 2-amino cyclo pent 1-ene carbodithioic acid (prepared from cyclopentanone & carbon disulphide) with Isatin. Scheme-4, 5 & 6 illustrate the synthetic methodology for the preparation of novel (Z)-4-substituted-((2-((2-oxoindolin-3-ylidene) aminocyclopent-1-ene carbothio-yl)thio derivatives.(XXXIIa-XXXIIe). They were characterized using elemental analysis; IR, 1HNMR, 13CNMR, and the purity of the compounds were confirmed by HPLC. All the synthesized compounds were screened for their Antibacterial and Antifungal activities, and the results are promising.

Study of Antimicrobial Activity:

The synthesized compounds (XXXIIa-XXXIIe) were evaluated *in vitro* for antifungal activity by using agar well diffusion method. The test organisms are: *Candida albicans* (MTCC 227) and *Saccharomyces cerevisiae* (MTCC 170). They were cultured on potato dextrose agar medium. Fluconazole was used as a standard reference and DMSO was used as a solvent. The compounds XXXIIa, XXXIIb, XXXIIc, exhibited equipotent activity against S.cerevisiae.

The synthesized compounds (XXXIIa-XXXIIe) have also been tested for antibacterial property, against gram positive bacteria: *S.aureus* (MTCC 3160), *B.subtilis* (MTCC 441) and *B.cereus* (MTCC 430); gram negative bacteria: *P.aeruginosa* (MTCC 424), *E.coli* (MTCC 443) and *P.vulgaris*. The compounds XXXIIa, XXXIIc, XXXIIe
showed good activity (nearly equal to the inhibition zone value of streptomycin) against *P. vulgaris*, *S. aureus*, *E. coli*, and *P. aeruginosa*. The results were compared employing streptomycin as standard reference drug. Compounds with carboxylic and amine substituents showed better activity than other substituents.

Chapter-III: Synthesis and characterization of 5,6-substituted,2,3-diaryl Quinoxaline 1,4-di-N-Oxide derivatives & 7-substituted-2,3-diphenylpyrido[2,3-b] pyrazine1,4-di-N-oxides and Investigations of their Anticancer activity besides Microbial activity.

Quinoxalines are versatile class of nitrogen containing heterocyclic compounds and they constitute useful intermediates in organic synthesis and also widely used in dyes, pharmaceuticals. Quinoxalines and their derivatives are found to be associated with various biological activities. Oxidation of both nitrogens of the quinoxaline ring dramatically increases the diversity of certain biological properties. In continuation of our studies on quinoxaline compounds, substituted quinoxaline 1,4 di-N-Oxides containing electron donating and electron withdrawing groups were synthesized and screened for Anticancer activity and Antimicrobial activity. **Scheme-14 & 15** illustrate the synthetic procedure for the preparation of 5,6-substituted,2,3-diaryl Quinoxaline 1,4-di N-Oxide derivatives (IVa-IVf) & 7-substituted-2,3-diphenylpyrido[2,3-b] pyrazine1,4-di-N-oxides (VIIIa-VIIIb) respectively.
Anticancer activity:

The in vitro cytotoxicity studies of synthesized compounds IVa, IVc, IVd, IVe, & VIIIb were performed on four different cell lines; and out of these, three are lung cancer cell lines (A549, NC1H292, and HCC827) and other is renal cancer cell line (786O respectively) and the cell viability was measured. The activities of the compounds were compared to that of reference standard drug Botrezomib. The compounds IVa, IVc, IVd showed potent IC\textsubscript{50} values in HCC827 and NC1H292 cell lines, when compared with the standard reference, for 7860, A549 cell lines, the activity is moderate. It was observed from the results that the synthesized compounds IVa, IVc, IVe, exhibited significant anticancer activity on lung cancer cell lines viz., HCC827 and NC1H292. The other cell lines 786O (renal cancer cell line) and A549 (lung cancer cell) line also showed potent activity compared to the standard compound used in this study.

Antibacterial Activity:

The antimicrobial activities of the synthesized compounds IVa, IVb, IVc, IVd, IVf, VIIIb were determined by the agar well diffusion technique [26]. All the tested compounds, along with standard streptomycin, was screened, in vitro, for antibacterial activity against gram positive bacteria Staphylococcus aureus (MTCC 3160), Bacillus subtilis (MTCC 441) and Bacillus cereus (MTCC 430); gram negative bacteria Pseudomonas aeruginosa (MTCC 424) and Escherichia coli (MTCC 443). The solutions of each tested compound were dissolved in dimethyl sulphoxide (DMSO).
The compounds show strong potent activity against \textit{P.aeruginosa} while the compounds \textit{IVb, IVc, IVd} exhibit moderate activity. The compounds \textit{IVb, IVc, IVd} and \textit{IVe} showed high activity against \textit{B.subtilis}, whereas \textit{IVA}, and \textit{VIIIb} possess moderately active. The compounds \textit{IVd, IVe} show high activity against \textit{E.coli} and \textit{Iva}. \textit{IVb, IVc, VIIIb} show moderately active. In case of \textit{S.aureus}, \textit{VIIIb, IVe} showed high activity, whereas \textit{IVA, IVb, IVc, IVd} showed moderate activity. All the compounds do not possess noticable activity against \textit{B.cereus}. All these compounds are compared with the standard reference (streptomycin) for their antibacterial activities.

Antifungal activity:

All the synthesized compounds \textit{IVA, IVb, IVc, IVd, IVf, VIIIb} were evaluated in vitro for antifungal activity by using agar well diffusion method; the test organisms are: \textit{Candida albicans} (MTCC 227) and \textit{Saccharomyces cerevisiae} (MTCC 170). Nystatin was used as a standard reference and DMSO was used as solvent (control), which did not possess any inhibition zone. Compounds \textit{IVc, IVb, IVe, VIIIb} showed moderate antifungal activity when compared with standard reference Nystatin.

Chapter-IV: Synthesis and characterization of 3-substituted phenyl-5-(2”,2”-dimethyl,7”-hydroxychroman)isoxazoles \& 3-(4’-chloropheny)-5-(3”,4”,9”,10”-tetrahydro-2”,2”,8”,8”tetramethyl-2”H,8”H-dipyranylbenzo[1,2-b:3,4-b’]) isoxazole \& study of their biological activity \& Molecular Docking studies:
Isoxazole is π-excessive five membered ring. The naturally occurring antibiotic-cycloserine, isocarboxyzide, ibotenic acid and muscimol, all are isoxazole derivatives. This chapter is divided into three sections; Section-A, describes the synthesis and characterization of some new isoxazoles viz. 3-substituted phenyl-5-(2”,2”-dimethyl,7”-hydroxychroman) isoxazoles [compounds 26-30]; in Section B, Synthesis, characterization of new chromanoisoxazole,3-(4’-chlorophenyl)-5-(3”,4”,9”,10”-tetrahydro-2”,2”,8”,8”tetramethyl-2”H,8”H-dipyranyl benzo[1,2-b:3,4-b’]) isoxazole is described and Section-C, an account of biological activity and molecular docking studies of chromanoisoxazoles is discussed.

The method employed for the synthesis of isoxazoles has been the common (3+2) route. Chalcones form the C3-frame work, and these chalcones on condensation with hydroxylamine hydrochloride resulted the formation of 3-substituted phenyl, 5-(2”,2”-dimethyl, &”-hydroxy chroman) isoxazoles. They were characterized using elemental analysis, IR, 1HNMR, 13CNMR, UV, etc.

The biological activity viz. antimicrobial (employing cup-plate method) and pharmacological activity studies of 3-substituted phenyl 5-(2”,2”-dimethyl, &”-hydroxy chroman) isoxazoles, synthesized were reported in this chapter. Antibacterial activity was determined against Gram-positive bacteria- *Bacillus subtilis* & *Bacillus pumilus* and Gram-negative bacteria, *Escherichia coli* & *Proteus vulgaris*, at concentrations of 5, 10, 20, 50, 100 and 200µg/ml to find minimum inhibitory concentrations (MIC). The antifungal activity of the compounds was tested against
two fungi, *Rhizopus oryzae* and *Aspergillus niger*. The *In vitro* experimental findings are in line with the results of the Molecular Docking studies.

Chapter-V: Synthesis and characterization of 5-((3-(4-substituted phenyl)-5-mercapto-4H-1, 2, 4-triazol-4-yl)diazenyl)naphthalene-2-ol derivatives and study of their anti-inflammatory activity besides microbial activity:

The triazole nucleus is an important five membered nitrogen containing heterocycles, and have turned out to potential chemotherapeutic and pharmacotherapeutic agents. In the present chapter, we describe the synthesis, characterizations of substituted 1,2,4-triazoles in part-A and antimicrobial as well as anti-inflammatory activities of the synthesized 1,2,4-triazole derivatives (IVa-IVe) in part-B. **Scheme-I** illustrates the synthetic process for the preparation of 5-((3-(4-substituted phenyl)-5-mercapto-4H-1,2,4-triazol-4-yl)diazenyl)naphthalene-2-ol. (IVa-IVe).

Anti-inflammatory activity of the synthesized Triozoles

The synthesis of heterocyclic rings containing nitrogen atoms became of great importance in medicinal chemistry. Increasing attention has been paid over the past two decades to the chemistry of triazole derivatives. In continuation of our interest for examining the biological activity of the synthesized molecules, we did the *in vitro* anti-inflammatory activity of the synthesized molecules viz triozoles. Anti-inflammatory refers to the property of a substance that reduces inflammation. The *in vitro* anti-inflammatory activity of the synthesized triazole compounds 1-7
were performed by using the 5-Lipoxygenase (5-LOX) Assay with the reference, standard Curcumin.

The lipoxygenase inhibitory capacity expressed as IC$_{50}$ (µg/ml). The compound VIb and VIe exhibited more potent activity with IC$_{50}$ 6.98 µg/ml and 8.0µg/ml. Compound VIc exhibited IC$_{50}$ value 20.84µg/ml. The remaining compounds VIa and VId exhibits IC$_{50}$ more than100µg/ml. “Curcumin” the reference standard exhibits the IC$_{50}$ value 12.79µg/ml under similar test conditions. The results are presented in fig 19 and 20. Hence it is concluded that compounds VIb and VIe possess notable anti-inflammatory activity, when compared with the reference standard. The compound VIc also exhibits considerable anti-inflammatory activity compared with reference standard “Curcumin

Antibacterial activity

The antibacterial activity of the synthesized compounds was evaluated *in vitro* with different concentrations (25µg, 50µg, 100µg and 200µg). The compounds were tested against gram positive bacteria viz., *Staphylococcus aureus* (MTCC 3160), *Bacillus subtilis* (MTCC 441) and *Bacillus cereus* (MTCC 430), and gram negative bacteria *Pseudomonas aeruginosa* (MTCC 424) *Escherichia coli* (MTCC 443) and *Proteus vulgaris*. The inoculated sterilized nutrient agar media was poured into petri dishes and allowed to solidify. 6mm wells were made on the agar surface. In each of these wells, 30µl of the test compound with different concentrations /reference standard/control was added by using a micropipette. Streptomycin was used as
standard reference and DMSO was used as a control (solvent) which did not possess any inhibition zone. The plates were incubated at 37°C for 24 hours for bacterial activity. The zone of inhibition was calculated by measuring the diameter of the inhibition zone around the well (in mm) including the well diameter. The readings were taken in three different fixed directions in all 3 replicates and the average values were tabulated.

Antifungal activity

All the synthesized compounds were evaluated *in vitro* by using agar well diffusion method. The test organisms viz., *Candida albicans* (MTCC 227) and *Saccharomyces cerevisiae* (MTCC 170) were used. They were cultured on potato dextrose agar medium. The plates were incubated at 28°C for 24 hrs and the zone of inhibition was measured in mm. Fluconazole was used as a standard reference and DMSO was used as a solvent (control), which did not possess any inhibition zone.

The screening result indicates that three compounds exhibited potent anti-inflammatory and antimicrobial activities. It can be noted that compounds with substituted Cl, Br, NH₂, and NO₂ in 4th position (VIa-VIe) showed the maximum inhibitory effect against one or more type of bacteria. Among the synthesized compounds, compound VIe exhibited notable antibacterial activity and (VIa) showed moderate antibacterial activity. Regarding antifungal activity it is clearly observed that, compounds VIb, VIc showed mild activity and compound VId showed moderate antifungal activity. From results, we observe that the compounds exhibited lower
fungicidal effect compared with their bactericidal effect. In *in vitro* anti-inflammatory activity, among the synthesized compounds, compound **VIb, VIc, VIe** showed potential activity compared to reference standard.