LIST OF FIGURES

Figure No.

2.2.1 *Stevia rebaudiana* plant. Source: www.varsleren.com/stevia.htm

2.2.2 Structures of stevioside and rebaudioside-A. Source: www.it.wikipedia.org/wiki/file

2.3.1 *Aloe barbadensis* plant. Source: www.ehow.com/how_2119543_use-aloe-vera-weight

2.3.2 Structure of aloin-A. Source: www.jkchemical.com/.../search/cas/1415-73-2.html

2.6.1 Different types of organisms used as biofertilizers

2.9.1 Phosphorus channel in soil. Source: Bagyaraj *et al.*, 2000

2.12.1.1 Role of oxidation pathway in release of Pi from Ca$_3$(PO$_4$)$_2$ at or near the rhizosphere. G=glucose; GA=gluconic acid; 2KGA=2-ketogluconic acid; 2,5 DKG=2,5 diketogluconic acid; GDH=glucose dehydrogenase; GADH=gluconate dehydrogenase; 2KGADH=2-ketogluconate dehydrogenase. Source: Goldstein, 1995

3.2.1.2.3.3 Map of pGEM-T vector. Source: www.biovisualtech.com/bvplasmid/pGEM-T_vector

4.1.1 ‘P’ solubilizing zone shown by PSB on PVK agar.

4.2.1.1 Representative graphs showing TCP solubilization and change in pH of the medium by PSB, isolated from *Stevia* plant rhizosphere

4.2.1.2 Correlation graph showing negative correlation between TCP solubilization and pH of the medium at $P \leq 0.05$

4.2.1.3 Representative graphs showing MRP solubilization and change in pH of the medium by the selected PSB, isolated from *Stevia* plant rhizosphere

4.2.1.4 Correlation graph showing negative correlation between MRP solubilization and pH of the medium at $P \leq 0.01$

4.2.2.1 Representative graphs showing TCP solubilization and change in pH of the medium by the selected PSB, isolated from *Aloe* plant rhizosphere
4.2.2.2 Correlation graph showing correlation between TCP solubilization and pH of the medium at P ≤ 0.01

4.2.2.3 Representative graphs showing MRP solubilization and change in pH of the medium by the selected PSB, isolated from Aloe plant rhizosphere

4.2.2.4 Correlation graph showing negative correlation between MRP solubilization and pH of the medium at P ≤ 0.01

4.3.1 Biocompatibility assay among PSB on PVK agar

4.5.1.1 PSB selected as bio-inoculants showing siderophore production zone on CAS agar plates, 1 (S1), 2 (S18), 3 (S9), 4 (S14), 5 (A20), 6 (A1), 7 (A6), 8 (E. coli as positive control), 9 (A51)

4.6.1.1 Cell morphology of PSB at X 1000, (A) PSB from Stevia plant rhizosphere, (B) PSB from Aloe plant rhizosphere

4.6.3.2.2.1 Genotypic profiling of PSB isolated from Stevia plant rhizosphere, using primer OPA-04 (A) and BOX A1 (B). L-1, (S1); L-2, (S9); L-3, (10,000 bp Bangalore Genei high range ruler); L-4, (S18); L-5, (S14)

4.6.3.2.2.2 Genotypic profiling of PSB isolated from Aloe plant rhizosphere, using primer OPA-04 (A), BOX A1 (B). L-1, (A1); L-2, (A6); L-3, (10,000 bp Bangalore Genei high range ruler); L-4, (A20); L-5, (A51)

4.6.3.3.1 Amplification of 16S rRNA gene of bacterial isolates. Lane-M, 1Kb ladder, L-1, S1; L-2, S9; L-3, S18; L-4, S14; L-5, A1; L-6, A6; L-7, A20; L-8, A51

4.6.3.3.2 Blue and white colonies on LB. Arrows indicating the recombinant clones

4.6.3.3.3 Plasmid DNA showing a band of 3Kb. Lane-M, 1Kb ladder, L-1, S1; L-2, S9; L-3, S18; L-4, S14; L-5, A1; L-6, A6; L-7, A20; L-8, A51

4.6.3.3.4 Phylogenetic tree based on 16S rRNA gene sequences, showing the relationships among selected PSB isolates (shown in bold letters) and representatives of other related taxa with validly published names. The 16S rRNA gene accession numbers are given within brackets. Bar = 0.02 substitutions per site. The number at the node, indicate bootstrap percentiles from 100 replicates
4.6.3.3.5 Phylogenetic tree based on 16S rRNA gene sequences, showing the relationships among selected PSB isolates (shown in bold letters) and representatives of other related taxa with validly published names. The 16S rRNA gene accession numbers are given within brackets. Bar = 0.02 substitutions per site. The number at the node, indicate bootstrap percentiles from 100 replicates.

4.8.2.1.1 Growth of *S. zevia* plants grown in un-amended soil. A, at the time of planting; B, after one month; C, at the time of harvesting. 1, control; 2, *B. gladioli* 10216; 3, *B. gladioli* 10217; 4, *E. aerogenes* 10208; 5, *S. marcescens* 10238; 6, consortium treatment.

4.8.2.2.1 Growth of *S. zevia* plants grown in TCP amended soil. A, at the time of planting; B, after one month; C, at the time of harvesting. 1, control; 2, *B. gladioli* 10216; 3, *B. gladioli* 10217; 4, *E. aerogenes* 10208; 5, *S. marcescens* 10238; 6, consortium treatment.

4.8.2.3.1 Growth of *S. zevia* plants grown in MRP amended soil. A, at the time of planting; B, after one month; C, at the time of harvesting. 1, control; 2, *B. gladioli* 10216; 3, *B. gladioli* 10217; 4, *E. aerogenes* 10208; 5, *S. marcescens* 10238; 6, consortium treatment.

4.8.3.1.1 Growth of *Aloe* plants grown in un-amended soil. A, at the time of planting; B, after one month; C, at the time of harvesting. 1, control; 2, *P. synxanthu* 10223; 3, *B. gladioli* 10242; 4, *E. hormaechei* 10240; 5, *S. marcescens* 10241; 6, consortium treatment.

4.8.3.2.1 Growth of *Aloe* plants grown in TCP amended soil. A, at the time of planting; B, after one month; C, at the time of harvesting. 1, control; 2, *P. synxanthu* 10223; 3, *B. gladioli* 10242; 4, *E. hormaechei* 10240; 5, *S. marcescens* 10241; 6, consortium treatment.

4.8.3.3.1 Growth of *Aloe* plants grown in MRP amended soil. A, at the time of planting; B, after one month; C, at the time of harvesting. 1, control; 2, *P. synxanthu* 10223; 3, *B. gladioli* 10242; 4, *E. hormaechei* 10240; 5, *S. marcescens* 10241; 6, consortium treatment.
4.10.1.4.1 A representative HPLC chromatogram showing stevioside (ST) and rebaudioside-A (R-A) contents for control plants (A) and consortium plants (B) grown in TCP amended soil

4.10.2.4.1 A representative HPLC chromatogram of aloin-A content (mg g\(^{-1}\)) for control plants (A) and consortium plants (B) grown in TCP amended soil

4.11.1 Correlation between P uptake and aloin-A production in *Aloe* plants grown in un-amended soil. Correlation is significant at P ≤ 0.01 level (2-tailed)

4.11.2 Correlation between P uptake and aloin-A production in *Aloe* plants grown in TCP amended soil. Correlation is significant at P ≤ 0.01 level (2-tailed)

4.11.3 Correlation between P uptake and aloin-A production in *Aloe* plants grown in MRP amended soil. Correlation is significant at P ≤ 0.01 level (2-tailed)