LIST OF FIGURES

Fig. 1.1 Steps in methodology 20
Fig. 1.2 Virtex-5 FPGA Design Flow 24
Fig. 2.1 4 x 4 pipes with switch architecture 35
Fig 2.2 Example of reconfigurable structure 38
Fig. 2.3 Various NoC topologies (a) 2D IC–2D NoC. (b) 2D IC–3D NoC. 44
(c) 3D IC–2D NoC. (d) 3D IC–3D NoC
Fig. 2.4 N x N multistage network 52
Fig 2.5 Typical NoC architecture in a mesh topology 54
Fig 3.1 N × N network representation using two stage of N × C and C × N 65
Fig 3.2(a) Dedicated paths for two stage switching network (8 x 8) 66
Fig 3.2(b) Routing of one inlet to all outlets 67
Fig 3.3(a) Two stage generic network with blocks 68
Fig 3.3(b) Two stage generic network (8 x 8) 70
Fig 3.4(a) Three stage switching 73
Fig. 3.4(b) Three stage switching network (8 x 8) 74
Fig 3.5(a) Four stage switching 77
Fig 3.5(b) Four stage switching network (8 x 8) 78
Fig 3.6(a) Five stage switching network (8 x 8) 80
Fig 3.6(b) Routing structure of five stage switching network (8 × 8) 81
Fig. 4.1 2D crosspoint topological (8 x 8) structure 93
Fig. 4.2 3D network structure for (8 x 8 x 8) switching structure 94
Fig. 4.3 Encryption-decryption process 96
Fig. 4.4 Data encryption logic for TACIT Algorithm 99
Fig. 4.5 Data decryption logic for TACIT Algorithm 101
Fig. 4.6 key distribution system 102
Fig. 4.7 Intercommunication between two touch keypad 107
Fig. 4.8 Touch keypad 108
Fig. 4.9 Principle of time division switching 112
Fig. 5.1 Pictorial view of FPGA Virex -5 FPGA 118
Fig. 5.2 Push button of FPGA 118
Fig. 5.4 Experimental set up 122
Fig. 5.5 Flow of synthesis on FPGA board 122
Fig. 5.6 ADC output on FPGA 123
Fig. 6.1 (a) RTL view of single stage switching (8 x 8) 126
Fig. 6.1(b) internal schematic of single stage switching (8 x 8) 127
Fig. 6.2 (a) RTL view of two stage switching (8 x 8) 127
Fig. 6.2(b) internal schematic of two stage switching (8 x 8) 128
Fig. 6.3 (a) RTL view of three stage switching (8 x 8) 128
Fig. 6.3(b) internal schematic of three stage switching (8 x 8) 129
Fig. 6.4(b) internal schematic of four stage switching (8 x 8) 130
Fig. 6.5 (a) RTL view of five stage switching (8 x 8) 130
Fig. 6.5(b) internal schematic of five stage switching (8 x 8) 131
Fig. 6.6 (a) Flow chart of single stage switching 135
Fig. 6.6 (b) Flow chart of two stage switching 136
Fig. 6.6 (c) Flow chart of three stage switching 137
Fig. 6.6 (d) Flow chart of four stage switching 138
Fig. 6.6 (e) Flow chart of five stage switching 139

Fig. 6.7(a) Modelsim simulation of single stage switching (8 x 8) 142
Fig. 6.7(b) Modelsim simulation of two stage switching (8 x 8) 143
Fig. 6.7(c) Modelsim simulation of three stage switching (8 x 8) 143
Fig. 6.7(d) Modelsim simulation of four stage switching (8 x 8) 144
Fig. 6.7(e) Modelsim simulation of five stage switching (8 x 8) 144

Fig. 6.8 (a) RTL view of 3D (8 x 8 x 8) 146
Fig. 6.8 (b) internal schematic of 3D (8 x 8 x 8) 147

Fig. 6.9 Flow chart of data transfer in 3D intercommunication 149
Fig. 6.10 Modelsim simulation of 3D (8 x 8 x 8) network 150

Fig. 6.11 Memory utilization in first, two, three, four and five stage network 160
Fig. 6.12 Blocking probability in single, two, three, four and five stage network 163

Fig. 6.13 Number of switching elements in single, two, three, four and five stage (N= 2, 4, 8, 16) 164

Fig. 6.14 Switching Capacity in single, two, three, four and five stage network (N= 2, 4, 8 and 16) 166