CHAPTER-IV
DECISION SUPPORT SYSTEM FOR
CONGENITAL HEART SEPTUM DEFECT DIAGNOSIS
BASED ON ECG SIGNAL FEATURES
USING NEURAL NETWORKS

4.1Introduction

One of the clinical tests performed to diagnosedeoital Heart Septum
Defect is through Electrocardiogram signals, whsblbws an electrical activity
of the heart in terms of the waves. To diagnoseg€nital Heart Septum
Defect, a physician should obtain the features hkeplitude values of the
waves and the time interval between the waves Q@G signals. As an ECG
signal may be of different lengths and an irregtyasf the heart may be shown
at any intervals of the signal, a physician haartalyze the signals completely
to diagnose the disease. It causes the time délthealiagnosis and also it is
difficult for an inexperienced physician to take tthecision about the diagnosis
accurately. This makes the patient to enter ingéosivere condition. Therefore,
in the present study, an algorithm is developecedasn Discrete Wavelet
Transformation to extract the features from ECGaig. Also, in this study, a
Decision Support System is developed to performg€aital Heart Septum
Defect Diagnosis classification based on the ECGtufes using

Backpropagation Neural Networks. The Network isntid by using a Delta
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Learning Rule. The developed algorithm and DecisBupport System are

implemented in MATLAB 7.3with GUI features.
4.2The Electrocardiogram (ECG)
4.2.1 Introduction
The Electrocardiogram (ECG or EKG) is a graphic record of the

direction and magnitude of the electrical actiwfythe heart that is generated

by depolarization and repolarization of the atnd aentricles [FHATO09].
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Fig 4.1: Normal ECG waves and corresponding insésv

Depolarization occurs when the cardiac cell, which are electsical
polarized, lose their internal negativity. The smleof depolarization is,
producing a wave of depolarization across the etigart. This wave represents
a flow of electricity that can be detected by eled¢s placed on the surface of
the body. Once depolarization is completed, theliaarcells are restored to
their resting potential. This process is callegolarization This flow of energy

takes in the form of ECG waves and is composed whe followed by QRS
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complex followed by T wave followed by U wave peardiac cycle which is
shown in fig 4.1. The amplitude values of the waarsrepresented in terms of
mV and the time intervals between the waves areesepted in terms of
seconds.

Many of the heart related diseases can be diagnbgedsing the
Electrocardiogram signals. In order to diagnoseseéhdiseases, a physician
analyzes the signal and extracts the featuresalikplitudes of the waves and
the time interval between them [DPBO7].

4.4.2 Heart Waves and Durations
P Wave

The P wave is a small low-voltage deflection aweynt the baseline
caused by the depolarization of the atria pricatta contraction. Generally, the
amplitude of a P-wave is 0.25 mV and the duratiba & wave is 0.08 to 0.1
seconds (80-100 ms) [SSNO8]. By using the timewale between the P waves,
atrial rate can be calculated. A Peaked P wavelscates right atrial
hypertrophy e.g., pulmonary hypertension or tricdisgienosis. Bifid broad P
waves suggest left atrial hypertrophy e.g., mgtahosis.

QRS Complex

The second wave is the QRS complex. Typically tosplex has a

series of 3 deflections that reflect the currerdoamted with right and left

ventricular depolarization. By convention the fidgflection in the complex, if
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it is negative, is called a Q wave. The first posideflection in the complex is
called an R wave. A negative deflection after awd¥e is called an S wave. A
second positive deflection after the S wave, ifehe one, is called the U wave.
Some QRS complexes do not have all three deflextiBat irrespective of the
number of waves present, they are all QRS compleQ&S-complex is the
largest-amplitude portion of the ECG [KHO04]. Gerlgrahe amplitude of R
wave is 1.6mV and the amplitude of Q-wave is 25%hefR-wave. Ventricular
rate can be calculated by determining the time nmale between QRS
complexes. The duration of the QRS complex is nbyn@a06 to 0.1 seconds.
This relatively short duration indicates that ventiar depolarization normally
occurs very rapidly. A broad QRS complex with ‘RSpattern in V1
represents right bundle branch block. A broad QRB &an ‘M’ pattern in lead |
represents left bundle branch block. The first negadeflection of a QRS
complex is the Q wave. If the Q wave is > 2mm, sitconsidered to be
pathological.
T Wave

The T-wave is the result of ventricular repolan@atand is longer in
duration than depolarizatioifhe polarity of this wave normally follows main
QRS deflection in any lead. The ventricles aretatsdly unstable during the
period of repolarization extending from the peaktlod T wave to its initial

downslope. A stimulus (e.g. a run away heart badled a premature beat)
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falling on this vulnerable period has the potent@lprecipitate ventricular
fibrillation- the so called R-on-T phenomend@enerally the amplitude of a T-
wave ranges from 0.1 to 0.5 mV. Sometimes a snuaitipe U wave may be
seen following the T wave, which is considered éadrepresentation of the
Papillary Muscle or Purkinje Fibers. A tall tentddwaves could represent
hyperkalaemia. T wave inversion can represent @orschaemia, previous
infraction or electrolyte abnormality such as hyglelemia.
PR Interval

The period of time from the onset of the P wavéh® beginning of the
QRS complex is termed as the P-R interval, whiamadly ranges from 0.12 to
0.20 seconds in duration. This interval represtr@gime between the onset of
atrial depolarization and the onset of ventricutlpolarization. If the P-R
interval is > 0.2 sec, there is an AV conductioackl which is also termed a
first-degree heart block if the impulse is stilllelio be conducted into the
ventricles. A short PR interval represents rapiddeation across the AV node,
usually, through an accessory pathway. A long RtBval but preceding every
QRS complex by the same distance is first degredldk. A P-R interval that
lengthens with each consecutive QRS complex, fatbty a P wave which has
no QRS complex and then by a P wave with a shorin®Rval is 2° degree
AV block. If the P waves that are followed by a QBSnplex have a normal

PR interval with the occasional non conducted PeMaw., a P wave with no
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subsequent QRS complex rhythm is said to be Mdpijie Il 2° degree AV
block.
RR Interval

The time period between the R waves is called &iRerval. Using this
R-R interval [GMO08] [TFS02] the heart beat ratee(tiumber of R-R interval)
and irregularity of a heart beat can be determifedegular heart beat has
uniform R-R interval values where as an irregulearh beat has variable R-R
interval values. Generally a normal value of a heste may be in the range of
60-100 beats/min. A slower rate than this valueaked as bradycardia and a
higher rate is called as tachycardia. That is drange in the normal heart rate
indicates arrhythmia.
ST Interval

The isoelectric period (ST segment) following th&®)is the time at
which the entire ventricle is depolarized and rdygiorresponds to the plateau
phase of the ventricular action potential. The s&fment is important in the
diagnosis of ventricular ischemia or hypoxia beeausder those conditions.
The ST segment can become either depressed oitezleVidhere are basically
three abnormalities seen in ST segment. A ST dsjoresould signify cardiac
Ischaemia, a ST elevation could highly suggestivenfsaction and a Saddle
shaped concave ST segments usually seen acrofiseaiCG suggesting a

diagnosis of pericarditis. The period of time fridme offset of the QRS complex
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wave to the offset of the T wave is termed as tiei&erval, which normally
has a value less than 0.30 seconds in duration.
QT Interval

The Q-T interval represents the time for both \ieatar depolarization
and repolarization to occur and therefore rouglstyngates the duration of an
average ventricular action potential. This intérgan range from 0.2 to 0.4
seconds depending upon heart rate. At high hedes,r ventricular action
potentials shorten in duration, which decreases @h€ interval. Because
prolonged Q-T intervals can be diagnostic for spgbdity to certain types of
tachyarrhythmias, it is important to determine ifgaven Q-T interval is
excessively long. In practice, the Q-T intervakxpressed as a corrected Q-T
(QTc) by taking the Q-T interval and dividing it lbiye square root of the R-R
interval (interval between ventricular depolarigag). This allows an
assessment of the Q-T interval that is independénbeart rate. Normal
corrected Q-T intervals are less than 0.44 secohgsolongation can lead to

serious ventricular arrhythmia such as torsadgsoddes.

4.3The Wavelet Transformation

4.3.1 Introduction
In signal analysis, there are number of differembctions one can
perform on that signal in order to translate ibidifferent forms that are more

suitable for different applications. The most p@pulunction is theFourier
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transform that breaks down a signal into constituent sirdsaf different
frequencies. That is, it transforms the signal froame based to frequency
based. For many signals (stationary signal), Four@nsform is extremely
useful because the signals frequency content igreat important. But the
serious drawback with this approach is the timeormftion is lost in
transforming to frequency domain. So, it is notgole to tell when a particular
event occurred through this approach. This drawlsackbe overcome by using
Short Time Fourier TransformatioSTFT). In a Short Time Fourier
Transformation a signal is mapped in both frequeamay time dimensions using
a technique called Widowing. Though the time arefjdlency information is
obtained at a time using this approach, it hasaablack that the size of the time
window must be fixed for all frequencies. To oveneothis drawback a most
common method calleWavelet TransformatiofWT) is used which it has a
time window of variable size [LMO7].

A Waveis an oscillating function of time or spat®aveletsare localized
waves and they have their energy concentratedn@ ar space. The Transform
of a signal is another form of representing thenaliglt does not change the
information content present in the signalWavelet Transformatiomvolves
convolving the signal against particular instanckthe wavelet at various time
scales and positions. Since changes in frequentyoeamodeled by changing

the time scales and changes in time can be motglathifting the position of
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the wavelet, both frequency and location of freqyeran be modeled by using
the Wavelet Transformation. That is a Wavelet ti@msation uses multi
resolution technique by which different frequenaes analyzed with different
resolutions. A Wavelet Transform at high frequescigives good time
resolution and poor frequency resolution, whildoat frequencies the Wavelet
Transform gives good frequency resolution and pimee resolutions. The most
frequently and commonly used types of Wavelet Thansations are
Continuous Wavelet TransformatioqCWT) and the Discrete Wavelet
Transformation (DWT)

4.3.2 The Continuous Wavelet Transform (CWT)

The Continuous Wavelet Transform was developed rasalternative
approach to the Short Time Fourier transform, t@roeme the resolution
problem. The wavelet analysis is done in a similay to the STFT analysis, in
the sense that the signal is multiplied with a fiorc similar to the window
function in the STFT and the transform is compusegarately for different
segments of the time-domain signal. However, tlagestwo main differences
between the STFT and the CWT.

The Fourier Transforms of the windowed signals ao¢ taken and

therefore single peak will be seen correspondingatsinusoid, i.e.,

negative frequencies are not computed.
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The width of the window is changed as the transfanu is computed for
every single spectral component, which is probdbé most significant
characteristic of the wavelet transform.

The Continuous Wavelet Transform (CWT) is providgdequation 4.1,
wherex(t) is the signal to be analyze,(t) is the mother wavelet or the basis
function. All the wavelet functions used in thengéorm are derived from the
mother wavelet through wavelet translation (shiffimnd scaling (dilation or

compression).

1 it — by
X, (ab)=— [ x(0) ¢ | ) dt A1
va | . a

The mother wavelet used to generate all the basistibns is designed
based on some desired characteristics associatéd that function. The
translation parametds relates to the location of the wavelet functionitais
shifted through the signal. Thus, it correspondsht time information in the
wavelet transform. The scale parameterdefined as |l/frequency| and
corresponds to frequency information. The Scalitigee dilates or compresses
a signal. Large scales (low frequencies) dilatedig@al and provide detailed
information hidden in the signal, while small ssafkigh frequencies) compress
the signal and provide global information about thignal. The Wavelet
Transform merely performs the convolution operabbthe signal and the basis

function. The above analysis becomes very usefolast practical applications.
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The high frequencies (low scales) do not last féorey duration, but instead,
appear as short bursts, while low frequencies (kagtes) usually last for entire
duration of the signal.

In order to recover the original signait) from the transformed
Continuous Wavelet Transformation, the followingdrse Continuous Wavelet

Transform (ICWT) can be used.

0= [ Lo i () aa e

(%) s the dual function als(t). And the dual function should satisfy

fm]m Lo (=Y g (20 dbda=s(t—t) .43
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is called the admissibility constant afigs the Fourier transform af. For a

successful inverse transform, the admissibility stant has to satisfy the
admissibility condition:

0<Cy <+co .45

It is possible to show that the admissibility cdimai implies tha (0) = 0 so
that a wavelet must integrate to zero.
For practical implementation of Continuous Wav@letnsformation, it is

computed over a finely discretized time-frequenayd.gThis dicretization
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involves an approximation of the transform integsalmmation) computed on a
discrete grid ofa scales and locations. In general, the wavelet transform is
approximated in this way over each time step foamr@ge of wavelet scales.
Therefore, there is a heavy computational burdeolwed in the generation of
the CWT and a vast amount of repeated informatsonontained within this
redundant representation of the Continuous Wavekisform T(a,b).

4.3.3 The Discrete Wavelet Transform (DWT)

The discretization of Continuous Wavelet Transfosroalled adDiscrete
Wavelet Transform (DWTYhe Discrete Wavelet Transform employs a dyadic
grid (integer power of two scaling ia and b), orthonormal wavelet basis
functions and exhibits zero redundancy. Mathemilyica Discrete Wavelet
Transformation can be computed in the following wayeneral way to sample
the parameters, b is to use a logarithmic discretization of scalandlocation
b. To link b to a, we move in discrete steps to each locatmpnwhich

proportional toa scale. This kind of discretization of the wavélas the form

m
0

, . 1 [t—nbyaf
vag o\

=}
where the integersn and n control the wavelet dilation and translation
respectively, @is a specified fixed dilation step parameter $et @alue greater
than 1 and is the location parameter which must be greaten thero. A

common choice for discrete wavelet parameteysald R are 2 and 1
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respectively. This power-of-two logarithmic scaling both the dilation and
translation steps is known as the dyadic grid gearent. The dyadic grid is
perhaps the simplest and most efficient discretimdor practical purposes and
lends itself to the construction of an orthonormvalelet basis. Bu substituting
a&=2 and B =1 into equation 4.6, the dyadic grid wavelet dan written
compactly as

Ii‘]r-: 12(.[2' = 2_”: :l,fl-'(_z_mt - I") 47

This has the same notation as the general diseatelet transformation.
Here, Y (t) will be used only to denote dyadic grid scalingh &=2 and b
=1. Discrete dyadic grid wavelets are usually chdsebe orthonormal. That is,
they are both orthogonal to each other and are alaed to have unit energy.

This is expressed as

= | . 1 If m=m' and n=
Winn (t)wr'z'.l‘. {tj at = [[] ) m.an i ...4.8
J_ e Otherwise

This means that the information stored in a wavelsfficient T,
obtained from the wavelet transform is not repeatisdwhere and allows for
the complete regeneration of the original signathwit redundancy. The
corresponding family of orthonormal wavelets is@athonormal basis. Using
the dyadic grid wavelet of equation 4tBe Discrete Wavelet Transform DWT

can be written as:
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Tpn = ’ x (1) U;'.,.;_,;(t:} dt ..4¢

o — oo

where T, is known as the wavelet (or detail) coefficiensaale and location
indices (m, n). The distinct difference between ®/T and discretized
approximations of the CWT is the discretizationtloe CWT required for its
practical implementation involves a discrete appnation of the transform
integral computed on a discrete grid afscalesb locations. The inverse
Continuous Wavelet Transform is also computed dsserete approximation.
How close an approximation to the original sigrsatecovered depends mainly
on the resolution of the dicretization used andchvaare usually a very good
approximation can be recovered. On the otherhaMdT @efined in equation
4.9 transforms integral remains continuous but éenined only on a
discretized grid ofa scales andb locations. We can then sum the DWT
coefficients infinity overm and n to get the original signal back exactly.
Orthonormal dyadic discrete wavelets are associat#tscaling functions and
their dilation equations. The scaling function ssaciated with the smoothing
of the signal and has the form as wavelet, given by

Prmn(t) =272 (27"t —n) .40
They have the property

’ Py (1) dt =1 411
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where [1g o(t)=L1(t) is sometimes referred to as the father scdiurgtion or
father wavelet (cf mother wavelet). The scaling cion is orthogonal to
translations of itself, but not to dilations ofals The scaling function can be

convolved with the signal to produce approximatoefficients as follows.

m (AT

Spn= | X(O (0 it 412

From the above, we can see that the approximataefficients are
simply weighted averages of the continuous sigmaitoied by 22 The

approximation coefficients at a specific scaleare collectively known as

discrete approximation of the signal at that scAleontinuous approximation

of the signal at scalen can be generated by summing a sequence of scaling

functions at this scale factor by the approximatoefficients as follows

-Yrr:(tj - Z 5“2-*:¢f-:.|1{.t)

where x,(t) is a smooth, scaling-function-dependent versibthe signal x(t) at
scale indexm. This continuous approximation approaches x(gmaall scales,
l.e. asm——oo . A signal x(t) can then be represented usingrabooed series
expansion using both the approximation coefficieanisl the wavelet (detail)

coefficients as follows

f

kitj: Z ‘S'F‘ﬂl:_.f‘.ti)“‘.l:_.r‘_(tj_!_ Z Z TW.‘_HLE’IH: 13{1—) 414

m=—
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This equation shows that the original continuousaligs expressed as a
combination of an approximation of itself at aréaryr scale indexn, added to a
succession of signal details from scalgglown to negative infinity. The signal

details at scalmis defined as

dn () = Z T, ., (1) 415

Hence, this equation can be written as

T~
Mp

x(0) = X, (6) + Z d,(t) A1e
From this equation, it is easy to show that

X,,_, (1) = x,,, (1) +d,,, (D) .. A4.17

which tells that the addition of signal detailaat arbitrary scale (index m) to
the approximation at that scale gives the signpl@pmation at an increased
resolution (i.e. at a smaller scale, index m-1)isTik called a multiresolution
representation [Mal89].

Multi-Resolution Analysis using Filter Banks Thedfyters are one of the most
widely used signal processing functions. Waveleis loe realized by iteration
of filters with rescaling. The resolution of thgsal, which is a measure of the
amount of detail information in the signal, is detmed by the filtering
operations and the scale is determined by upsagy@imd downsampling

(subsampling) operations.
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The Discrete Wavelet Transform of a signal candreputed by passing
it through the lowpass and highpass filters as shiowig 4.2 This is called the
Mallat algorithm or Mallat-tree decomposition [MAI8 In the fig 4.2 X[n]
represents the original signal to be filtered, weherns an integer, &epresents
the lowpass filer and Hrepresents the highpass filter. At each level, the
highpass filters produces detail information, d[nfile the lowpass filters

associated with scaling function produces coarpeoxgmations, a[n].
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Fig 4.2: Three-level Wavelet Decomposition Tree
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Fig 4.3: Three-level Wavelet Reconstruction Tree

With this approach, the time resolution becomestrary good at high

frequencies, while the frequency resolution becormadstrary good at low
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frequencies. The filtering of the decimation praces continued until the
desired level is reached. The maximum number afl¢esiepends on the length
of the signal. The DWT of the original signal i®thobtained by concatenating
all the coefficients, a[n] and d[n], starting frdhe last level of decomposition.
Fig 4.3 shows the reconstruction of the origingnal from wavelet
coefficients. Basically, the reconstruction is theverse process of
decomposition. The approximation and detail cogffits at every level are
upsampled by two passes through the lowpass ahgdmsg synthesis filters and
then added. This process is continued throughahe syumber of levels in the
decomposition process to obtain the original sighlaé Mallat algorithm works
equally well if the analysis filters, {&&and H, are exchanged with synthesis

filters, G, and H.

— J\(‘. }_‘\/\ fj r{fﬂkv

(al =)} (=] cel}

1 | f 0.8 fl
ns i| o ! || 1 | :f :II
| o '-,'l ||| II_.-" 02 I| I|I

: |I| e | ||| | 02 ™\ II !| 4
Fig 4.4: Wavelet Families (a) Haar (b)Daubachigs)Coifletl (d)Symlet2
(e) Mayer (f) Morlet (g)Mexican Hat

There are a number of basis functions that candeel as the mother

wavelet for Wavelet Transformation. Since the mothavelets produces all the

wavelet functions used in the transformation thiotrgnslation and scaling, it
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determines the characteristics of the resulting &&vTransform. Fig 4.4

illustrates some of the commonly used wavelet fonst The Haar wavelet is
one of the oldest and simples wavelet. Daubacheslets are the most popular
wavelets. The Haar, Daubeches, Symlets and Codletsompactly supported
orthogonal wavelets. The wavelets are chosen basettheir shape and their

ability to analyze the signal in a particular apation.

4.4Automatic Extraction of ECG Features using Discreté/NVavelet
Transform

4.4.1 Introduction

One of the clinical tests performed to diagnosedeoital Heart Septum
Defect is through Electrocardiogram signals. Ineortb diagnose Congenital
Heart Septum Defect based on ECG signals, a physamalyzes and extracts
the features like the amplitudes of P wave, QRSptexnand T waves and the
time intervals between P-R, R-R S-T and Q-T ofwlaees. Since an ECG may
have different lengths and being a non-stationgyyat and the irregularity may
not be periodic instead it can be shown up at atgrval of the signal, it is
difficult for a physician to analyze and to extréioe features from ECG signal
manually. In this module, an algorithm is developecautomatically analyze
and to extract the features from ECG signals bamedDiscrete Wavelet
Transform. The developed algorithm initially perfa preprocessing of a signal
in order to remove baseline drift (De-trending) awise (De-noising) from the

signal and then it uses the preprocessed signaxioacting the features from
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the ECG signal automatically. By using developegbathm, the accuracy of
the analysis can increased and the analysis timanoECG signal can be
reduced.
4.4.2 Material and Methods
Dataset used

The data set used for the present study is thearBéardiogram signals,
which are obtained from the MIT-BIH database vig$tbnet website [Phy] and
stored in a text format. The MIT-BIH database cor#amany types of
Electrocardiogram signals including both abnormalr anhealthy
Electrocardiograms and normal Electrocardiogramhbjchv are sampled at
different rates. For example record 16272 is oaliynsampled at 128 Hz,
record 30 was sampled at 250 Hz and record 113 saagled at 360 Hz.
Therefore, to process all the signals uniquelythelsamples must be resampled
at 360 Hz before processing the ECG signal. EC@atsgof length 30 minutes
duration are selected for the present study. Builewprocessing only 10
seconds of the data is used.

Method

In the present module, to automatically extract E@atures, an
algorithm is developed based on the Discrete Wavélansform. The

processing steps involved in the developed algordhe as follows:
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Initially the original ECG signal is decomposedoin8 levels using
Discrete Wavelet Transform and Dabachies6 (db&hesnother wavelet.
Then by using the Inverse Discrete Wavelet Tramsfahe individual

decomposed components are reconstructed. Now basedthese

individual reconstructed components of the ECG aigtine features are
extracted.

Before extraction of ECG features, the signal masstpreprocessed in
order to have signal without baseline drift andseoi

Since the low frequency components causes for alibasdrift, low

frequency reconstructed components must be deddiciedthe original

ECG signal to remove baseline drift.

Similarly, in order to remove noise, the high fregay reconstructed
components (which causes for noise) must be dediutten the de-
trended ECG signal.

Now, the preprocessed ECG signal is used for exticpECG features.

The detailed description of the developed algorithlong with the

experimental results is shown in the following s®tt

4.4.3 Extraction of ECG Features

In order to extract ECG features, the developedralgn decomposes

the obtained original ECG signal into correspondimproximation and Detalil

coefficients up to 8 levels usirgiscrete Wavelet Transformatioiihe mother

95



wavelet or basis function that is used in the dgmmsition isDabachies§db6)
[MAAOQ5]. The decomposed approximation and detadftioients of the signal
are cAl, cA2 ..., cA8 and cD1, cD2. . . ,cD&eTdecomposed signal is then
reconstructed to get original ECG signal componéewgitssing hverse Discrete
Wavelet TransformatiofiIDWT). The reconstructed approximation and detail
coefficients of the signal are Al, A2 . ..., AgdaD1, D2, ... D8. Among these
components, the components A8 and D8 have the tofweguencies, the
components Al and D1 have the highest frequenaieshb&tween of these
components have from lower to higher frequencieewNthe obtained
individual reconstructed ECG components are usethdth preprocessing and
extracting ECG features. The developed algorithim@emented irMATLAB
7.3 using GUI feature. In the present module, in orbetest the developed
algorithm aRecord No 103 of MIT-BIFArrhythmiais selected. The original
ECG signal of length 800 samples for Record No dOBIIT-BIH Arrhythmia

Is shown in fig 4.5

ORIGINAL ECG SIGNAL
T T T

1.5¢ ‘ ‘ .
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Fig 4.5: The original ECG signal of Record No 103 of FBIH Arrhythmie
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After decomposition, the individual reconstructedmponents of the
ECG signal of length 3600 samples are shown iMfidy Now the obtained
components are used for both preprocessing andotixiy the features from the

ECG signal.

Individual Reconstructed Approximation and Detail Components
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Fig 4.6 : Reconstructed Approximation and Detah@onents of the
ECG signal

4.4.3.1 ECG Preprocessing

When an Electrocardiogram is recorded many kindsotges are also be
recorded due to very low and high frequencies [VR&P, which causes an
ECG to have baseline drift and noise in the signalis very difficult to clinical
diagnosis. For proper diagnosis of ECG, it is neagsto remove noise from
the signal [AK10]. A process of removing the baseldrift of a signal [Daq05]
Is called de-trending and a process of removinghthise [UMVO09] of a signal

is called de-noising. Both of these processes aamder the preprocessing of an
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ECG signal. Once the signal is preprocessed theantbe used for feature
extraction.
ECG Baseline Drift Removal

Since the low frequency components cause the sifpralbaseline
shifting, these components must be deducted to hasignal without baseline
drift. In this study, the low frequency componeatsa decomposed signal are
A8 and D8.

Therefore, to remove the baseline drift, the dgwedbalgorithm removes
these components from the original ECG signal. Tthes problem of baseline
shifting is solved. The original and de-trended EG@nal of length 800

samples is shown fig 4.7.

Detrended Original ECG Signal
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Fig 4.7: The De-trended ECS8gnal
ECG De-noising

Though the low frequency components are removenh ftioe original
signal, still it may have noise due to high frequeromponents. In order to
remove the noise from ECG signal, it is requireddentify which components

contain the noise and then these identified commpisnare removed from the
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de-trended signal. When a signal is decompose byTDWe successive
approximations becomes less and less noisy as amarenore high frequency
information is filtered out of the signal. But,disscarding all the high frequency
information many of the original signal’'s sharpfesttures are lost. Optimal de-
noising requires a more subtle approach catl@@sholding[MKO08]. This
involves discarding only the portions of the detdilat exceed a certain limit.
The developed algorithm uses global thresholdirtgpopwhich is derived from
Donoho-Johnstone fixed form thresholding strategy &n un-scaled white
noise. By using the developed algorithm, the idexti high frequency
components are D1, D2. These components must teeelll by applying a
threshold. Then the thresholded components arevemnfsom the de-trended

signal. The de-noised ECG signal of length 800 $asnp shown in fig 4.8.

Denoised ECG Signal

(0] 100 200 300 400 500 600 700 800

Fig 4.8: De-noised ECG signal
4.4.3.2 Extraction of ECG Features
QRS complex
Since the peaks of R waves in the ECG signal Haedargest amplitude

values among the other waves, identifying the QR&ptexes of an ECG
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signal by using the developed algorithm is an eask. To detect the R waves,
the developed algorithm removes the very low andy V@gh frequency
components from the ECG signal. In this study,dbtail components of D3,
D4 and D5 show the QRS complex more clearly comganvith other
components. Therefore, the algorithm keeps thesgwonents and removes the
other low frequency and high frequency componefnte R waves of ECG

signals are shown in fig 4.9

R Waves of the ECG Signal
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Fig 4.9: R-waves of the ECG Signal

To make the R wave more noticeable, the obtaingdasiis squared,
which is shown in fig 4.10Since the obtained signal has pseudo peaks, a lower
limit is applied to remove these pseudo peaks gtioieling), which is shown in
fig 4.11. Once the R-peaks are identified therart be used by the developed
algorithm to automatically calculate the amplituddues of R waves and the
time intervals between them. The amplitude valde’ waves for ECG record
103 of arrhythmia, determined by the developedrélym are 1.694, 1.7132,

1.7914, 1.6916, 1.7963, 1.6179, 1.8395, 1.8738,54,71.6519 and 1.7910.
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Power of R Waves of the ECG Signal
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Fig 4.10: The Power of R-waves of the ECG Signal

Thresholded R waves of the ECG Signal
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Fig 4.11: Thresholded R-waves of the ECG Signal

Once the R peaks are determined then based ongbkake the Q and S
peaks are detected. Generally, the Q and S peakssogbout the R peak within
0.1 second. Therefore, to make the peaks more eattie, the developed
algorithm removes all the detail components of slggal up to D5 from the
signal. The approximation signal is remained sarhe.first negative deflection
to the left of the R-peak is denoted as Q-peakthedirst negative deflection to
the right of the R peak is denoted as S peak.drfith4.12, the left point about
the R peak denotes the Q-peak and the right pbmiitahe R peak denotes the

S peak. Once the R-peaks are identified then itbsansed by the developed
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algorithm to calculate the amplitude values of @ & waves automatically.
The amplitude values of the Q waves and S waveE@G record 103 of
arrhythmia are -0.3206, -0.3694, -0.3083, -0.30873643, -0.3314, -0.3235,-
0.3095, -0.3495, -0.3456, -0.2884 and -0.3493,266K4 -0.4398, -0.4697, -

0.281, -0.3296, -0.4012, -0.3836, -0.4458, -0.4103620.

Q-S Waves of the ECG Signal
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Fig 4.12: The Q and-waves of the ECG Sigr

P and T-waves

The extreme of the signal before and after zeresings about QRS
complex denotes the P and T waves. The detectedcressings of the signal
about the P and T peaks are the onset and offsetspof the waves
respectively. To make the P and T peaks more radilee the developed
algorithm keeps the details D4 to D8, which arewsha fig 4.13.0nce the P
and Q peaks are identified then it can be usedhbydeveloped algorithm to
calculate the amplitude values of P and T wavesnaaitically.

The amplitude values of the Q waves and S waveE@§s record 103 of

arrhythmia are 0.0448, 0.0873, 0.0188, 0.0795,0.06.0369, 0.0700, 0.0453,

102



0.0864, 0.0171, 0.0493 and 0.3083, 0.3220, 0.303D09, 0.3582, 0.3067,

0.3313, 0.2967, 0.3400, 0.3324, 0.2821.

The P and T waves of the ECG Signal

Fig 4.13: The P and T waves of ECG Signal
RR-Interval

The R-R interval of an ECG signal is the time inédrbetween the R-
waves. In order to determine the R-R interval okignal, the developed
algorithm determines the difference between the twosecutive R wave
locations based on the identified R waves. The Rt&val values in terms of
the seconds obtained through the developed algoritin the Record No 103
are 0.8639, 0.8333, 0.8444, 0.8417, 0.8667, 0.9287,78, 0.8333, 0.8333 and
0.8417. Since these interval values are not conskeiaughout the signal, it
indicates the abnormality of a heart rate. Also tibenber of heart beats per
minute calculated (number of R-R intervals) by dieeeloped algorithm is 60.
P-R Interval

Once the P and R waves are identified, it can leel by the developed
algorithm to determine P-R intervals. In order &teimine P-R interval, the

developed algorithm determines the interval betwibenonset of P waves and
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onset of Q waves. The P-R intervals determinechbydeveloped algorithm for
record no 103 of arrhythmia are 0.1833, 0.1833%010.1278, 0.1722, 0.1833,
0.1778, 0.1139, 0.1806, 0.1139 and 0.1806.
S-T Interval

Once the S and T waves are identified, it can leel Uy the developed
algorithm to determine S-T intervals. In order ttedmine S-T interval, the
developed algorithm determines the interval betwieenonset of S waves and
offset of T waves. The S-T intervals determinedt®y developed algorithm for
record no 103 of arrhythmia are 0.3222, 0.3028%030.3194, 0.3306, 0.3611,
0.3278, 0.3222, 0.3194, 0.3472 and 0.3472.
Q-T Interval

Once the Q and T waves are identified, it can szl Uy the developed
algorithm to determine Q-T intervals. In order tetetmine Q-T interval, the
developed algorithm determines the interval betwteenonset of Q waves and
offset of T waves. The Q-T intervals determinedfiy developed algorithm for
record no 103 of arrhythmia are 0.4167, 0.3778[%040.4528, 0.4278, 0.4556,
0.4361, 0.4639, 0.4167, 0.5000 and 0.4417
Missing of Waves

Missing of the waves can be determined by the dgesl algorithm
based the wave intervals. The missing of QRS coxeplean be determined

based the R-R interval values by checking whetheretis any value with twice
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the value of R-R interval. Similarly the missing Bfwave can be determined
based the P-R interval values by checking whethenetis any value with zero
as P-R interval and the missing of T wave can keroened based on Q-T
interval by checking whether there is any valuéweiero as Q-T interval. There
are no missing waves determined by the developmgatitim in record No. 103
arrhythmia.
Inversion of waves

The inversion of the waves can be determined byléveloped algorithm
based on the amplitude values of waves. An invargioa QRS complex is
determined by checking the sign of the R wave marmnamplitude values. A
positive amplitude value indicates that the R wavéocated above the zero
crossings and has no inversion. A negative amg@ittadue indicates that the R
wave is located below the zero crossings and hassion. Similarly the sign of
the P wave and T wave amplitudes are determinetig¢ok the inversion of the
P wave and T waves. There is no inversion of theewaletermined by the
developed algorithm in record no 103 arrhythmia.

Therefore, the developed feature extraction algorican be used by a
physician to automatically analyze and to extraetfeatures from ECG signals.
The developed algorithm reduces the analysis tifna physician and also

increases the accuracy of the ECG analysis. Theopea system is not only
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used for ECG analysis, instead it can also be tsstbre and view the results

of the ECG analysis for future reference.

4.5Decision Support System for Congenital Heart Septunbefect
Diagnosis using Neural Networks based on ECG analgs

4.5.1 Introduction

Though the developed algorithm analyzes and exstraeatures
automatically from the Electrocardiogram signatsl & may be difficult for a
physician to diagnose Congenital Heart Septum Deflee to lack of
subjectivity of a physician (clinician) or inexpenice with the previous cases of
the physicians. This may cause the inaccuracy ef dlagnosis and may
increases the time delay of the diagnosis.

Therefore, in order to improve the diagnosis aaou@nd to reduce the
diagnosis time, it has become a demanding issuevelop an efficient and
reliable medical Decision Support System to supporplicated diagnosis
decision process. Since the Neural Networks hawevisigreat potential to be
applied in the development of medical Decision Supystem for diagnosis
of Heart Diseases in the present study also, asigeciSupport System is
developed to perform the Congenital Heart Septunmfed@e Diagnosis
classification based on the ECG features.

4.5.2 Materials and Methods

Parameters used
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#No Attribute Name Description Allowed Values
1 Age Patients age Continuous
2 Gender Patients gender Continuous
3 Systolic B.P Systolic Blood Pleasure Continuous
4 Diastolic B.P Diastolic Blood Pleasure Continuous
5 Heart Rate Number of heart beats (bpm) Continuous
6 P wave missing Missing of P waves in the ECGalign Binary

7 QRS complex missing Missing of QRS complex inE@®G signal Binary

8 T wave missing Missing of T wave in the ECG signa Binary

9 P wave inversion Inverse of P waves in the EQBadi Binary

10 QRS complex inversion Inverse of QRS compleh@ECG signal Binary

11 T wave inversion Inverse of T wave in the ECghal Binary

12 P wave amplitude Amplitude of the P wave Corairsy

13  Q wave amplitude Amplitude of the Q wave Cornbunsl

14 R wave amplitude Amplitude of the R wave Cornbunsl

15 S wave amplitude Amplitude of the S wave Corairsy

16 T wave amplitude Amplitude of the T wave Contuas

17  RRinterval Interval between the two R waves tDoous

18 Irregular Heart Beat Indicates the irregulaotyhe heart beat  Binary

19 PRinterval Interval between the P wave and Rewa  Continuous

20 ST interval Interval between the S wave and Veva  Continuous

21 QT interval Interval between the P wave and Reva  Continuous

Table 4.1: Parameter Names, Description and théaveed Values
of DSS for CHSIDiagnosis based on ECG Signal featt

The parameters that are used to perform Congédait Septum Defect

Diagnosis classification based on ECG featurestaeamplitude values of P,
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QRS complex and T waves and the times intervalegabf P-R, R-R, S-T and
Q-T. In the present study a total of 200 samplesuaed, each sample is having
a set of 13 input parameters and one output paesmBbe parameter names
along with the description and their allowed valaes represented in table 4.1.
Method

In the present study, in order to develop a DegiSapport System for
Congenital Heart Septum Defect Diagnosis based @8 Bignal, at first, the
ECG features are extracted from the obtained EQ@akiby applying the
developed ECG feature extraction algorithm. TheBaakpropgation Neural
Network (discussed in section 2.2.7) is built based the extracted ECG
features along with the basic information of a gmtias input nodes. The
network is trained using a supervised Delta LegrniRule. The activation
function used in this model is the sigmoid functi@mce the network is trained,
then it can be used to perform the diagnosis ¢leason automatically for a
new pattern. Theauser friendly Decision Support Systems are desigaedi
implemented in MATLAB 7.3 with GUI features. The €&&on Support System
is developed not only for the diagnosis classifargtbut it can also be used to
store and view the diagnosis result. The architecaf a Decision Support
System for Congenital Heart Septum Defect Diagnbased on ECG signal is

shown in fig 4.14.
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From the architecture, it shows that when the E@@as of a patient is
given as input by the user, the developed Decisupport System
automatically analyzes, extracts features and pedo the diagnosis
classification automatically and displays the restlihe developed Decision
Support System also stores the diagnosis resutimatically, which can be

used to view for future reference.

ECG signal Pre- ECG signal featu-
Input ECG Signal > processing usin » re extraction using
DWT DWT
A 4
Storage of Data
Diagnosis Result [¢ Diagnosis Result [« v
'y Neural
Network
Techniques

Decision Support System

Fig 4.14: Architecture of DSS for CHSD Diagnosiséd on
ECG signa feature:

4.5.3 Experiments and results
Experiment:

The Decision Support System for Congenital Hearpt$a Defect
Diagnosis is designed and implemented in MATLAB With GUI feature by

using the Backpropagation Neural Network Model.
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In order to implement Backpropagation Network Modeitially a Feed
Forward Neural Network is built with 13 input noddshidden nodes and one
output node. The input parameters used in thigsysire the age, gender, B.P,
heart rate and the features extracted from the BEGsing the developed
algorithm. The output parameter used in this sys&eto indicate result of the
diagnosis in terms of either normal or abnormalc®tie network is built, then
it can be trained by using a Delta Learning Rulee @ctivation function used in
this model is the sigmoid function. 200 samplesaniéected and used to train
network and test the network. Among these sample¥, of the data are used
for training and 15% of the data are used for ngstpurposes. Once the
Network is trained using these samples then theldped Decision Support
System does the classification automatically fornew case. The Error

performance (Mean Squared Error) of the trainingvogk is shown in fig 4.15.

MSE versus Epoch
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Fig 4.15: The Error Performance of a training netwof DSS for
CHSDDiagnosisbased on EC Signal feature:

110



The least MSE value for the present experiment.@d3®2 Since the
Neural Network solutions will not depends on algonic solution instead it
depends on examples of the previous cases, it gioge accurate results than
the human diagnosis.

The developed Decision Support System performs fiypes of
operations. These are represented in terms of NEVWALYSIS, DECISION,
STORE and VIEW pushbuttons. Pushbutton NEW is ueeclear the screen
(for entering new patient information), the pushttANALYSIS is used to
automatically extract the ECG features based omléiveloped algorithm and to
display the results, the pushbutton DECISION isduse perform diagnosis
classification automatically based on the selep@@meters and to display the
result, the pushbutton STORE is used to store dlierd information along with
the resultant value in terms of text format andghshbutton VIEW is used to
view the stored text file.

The developed Decision Support System can be uge dhysician to
automatically diagnose Congenital Heart Septum &dfased on ECG signal
features by giving the patient’s ECG signal as fr{puterms of patient number)
along with the basic information of a patient isstolic B.P, diastolic B.P etc
of a patient. The developed system reduces thendsg) time of a physician

and also increases the accuracy of the diagnosaldition to the diagnosis, the
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proposed system also stores and retrieves thetasswalues for future
reference.
Results:

The developed Decision Support System is testatlaignose record No
103 of Arrhythmia Database. The original ECG sigvfalecord No 103 viewed
through the developed Decision Support System esvehin fig 4.16. In the
figure 4.16, it shows that once the patient nunibentered then by pressing the
VIEW ORIGINAL ECG SIGNAL pushbutton, it automatital shows the
corresponding original ECG signal. Now, to autowwlly analyze and to
perform the diagnosis classification, the ANALYZE& SIGNAL pushbutton
should be pressed as shown in fig 4.17. By usimgySkistem, once the patient
number is entered then it automatically extraces fimatures from the ECG
signal and displays the results by pressing the BXIZE button. Finally, to
perform the diagnosis classification automaticalig to display the results, the
pushbutton DECISION should be pressed. The resldtained through the
developed Decision Support System for record No AfGBythmia Database is

shown in fig 4.17
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Decision Support System for CHSD diaghosis based ECG features

—ECG Analysi
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i Consulting Date 03-May-2011
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( VIEW ORIGINAL ECG SIGNAL ANALYZE ECG SIGNAL

Fig 4.16: Viewing the Original ECG signal of Recdyd 103 of MIT-BIH
ArrhythmiaDatabase using developed Decision Support System

The developed Decision Support System gives amracg of 100%,
which is shown fig 4.18. The classification resaflthe experiment in terms of

the confusion matrix is shown in table 4.2.

-} PROJECTECGFORMNEW 2

Decision Support System for CHSD diagnesis based ECG features
— ECG Evaluation

— Frimary Information

Patient No scg103 | Consulting Date:: 03-May-2011
Age (Years) ‘ 96 | Systolic B.P (mmHg) | 110 J
Gender [Fomals | Diastolic B.P (mmHg) [ s |
— Absence of Waves—————————— — Wave Amplitudes—— —Wawve Intervals -
P-Wave | Mo | P-Wave (m\V) ‘ 0.0487168 Heart Rate (bpm) | €0 |
; _ _ ) Irregular Heart Beat! Yes |
QRS-Complex Mo Q-Wave (mV) | 0458217 ‘ T —
| | PR-Interval (Sec) 0.158333 ‘
T-Wave T‘ L -
- R-Wave (mV) | 74332 || RR-Interval (Sec
— Inversion of YWwaves |7: ( ) | 0.856111 |
P-Wave [ N ] S-Wave (mV) | 451721 || ST-Interval (Sec) | 39545 |
ORS-Complex | nNo | W@ BV 515360 ||| ST TIERERESEN (240172
: IManipulations
ieve | No | NEW| ANALYSIS| DECISION|| ResuLT Abnormal

STORE| VIEW |

Fig 4.17: The diagnosis result of an abnormalgon using
developed DSS for CHSD based on ECG signal features
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Fig 4.18: A chart representing the classificatiactaracy of the DSS
for CHSD based on ECG feat

Output / Desired 0 1
0 10 0
1 0 20

Table 4.2: Confusion Matrix of DSS for CHSD Diageos
based orECG features classificatic

4.6 Conclusion

Since an ECG signal may be of various lengths hacabnormality of a

heart can be shown at interval of the signal, itif§icult for physicians to

analyze and to extract the features automaticallso it is a time consuming

process. Therefore, the developed ECG featureatixmaalgorithm can be used

by the physician to automatically analyze and tiwaex the ECG features. Also,

the developed Decision Support System can be wsadtomatically diagnose

Congenital Heart Septum Defect based on ECG festiitee developed system

reduces the diagnosis time and increases the agcof#he diagnosis. Thus the

performance of the developed system is increased.
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