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4.1 Introduction 

One of the clinical tests performed to diagnose Congenital Heart Septum 

Defect is through Electrocardiogram signals, which shows an electrical activity 

of the heart in terms of the waves. To diagnose Congenital Heart Septum 

Defect, a physician should obtain the features like amplitude values of the 

waves and the time interval between the waves from ECG signals. As an ECG 

signal may be of different lengths and an irregularity of the heart may be shown 

at any intervals of the signal, a physician has to analyze the signals completely 

to diagnose the disease. It causes the time delay of the diagnosis and also it is 

difficult for an inexperienced physician to take the decision about the diagnosis 

accurately. This makes the patient to enter into the severe condition. Therefore, 

in the present study, an algorithm is developed based on Discrete Wavelet 

Transformation to extract the features from ECG signals. Also, in this study, a 

Decision Support System is developed to perform Congenital Heart Septum 

Defect Diagnosis classification based on the ECG features using 

Backpropagation Neural Networks. The Network is trained by using a Delta 
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Learning Rule. The developed algorithm and Decision Support System are 

implemented in MATLAB 7.3with GUI features. 

4.2 The Electrocardiogram (ECG) 

4.2.1 Introduction 

The Electrocardiogram (ECG or EKG) is a graphic record of the 

direction and magnitude of the electrical activity of the heart that is generated 

by depolarization and repolarization of the atria and ventricles [FHAT09].  

 

 

Depolarization occurs when the cardiac cell, which are electrically 

polarized, lose their internal negativity. The spread of depolarization is, 

producing a wave of depolarization across the entire heart. This wave represents 

a flow of electricity that can be detected by electrodes placed on the surface of 

the body. Once depolarization is completed, the cardiac cells are restored to 

their resting potential. This process is called repolarization. This flow of energy 

takes in the form of ECG waves and is composed of P wave followed by QRS 

Fig 4.1:  Normal ECG waves and corresponding intervals 
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complex followed by T wave followed by U wave per cardiac cycle which is 

shown in fig 4.1. The amplitude values of the waves are represented in terms of 

mV and the time intervals between the waves are represented in terms of 

seconds.  

Many of the heart related diseases can be diagnosed by using the 

Electrocardiogram signals. In order to diagnose these diseases, a physician 

analyzes the signal and extracts the features like amplitudes of the waves and 

the time interval between them [DPB07]. 

4.4.2 Heart Waves and Durations 

P  Wave  

The P wave is a small low-voltage deflection away from the baseline 

caused by the depolarization of the atria prior to atria contraction. Generally, the 

amplitude of a P-wave is 0.25 mV and the duration of a P wave is 0.08 to 0.1 

seconds (80-100 ms) [SSN08]. By using the time intervals between the P waves, 

atrial rate can be calculated. A  Peaked P waves indicates right atrial 

hypertrophy e.g., pulmonary hypertension or tricuspid stenosis. Bifid broad P 

waves suggest left atrial hypertrophy e.g., mitral stenosis. 

QRS Complex 

The second wave is the QRS complex. Typically this complex has a 

series of 3 deflections that reflect the current associated with right and left 

ventricular depolarization. By convention the first deflection in the complex, if 
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it is negative, is called a Q wave. The first positive deflection in the complex is 

called an R wave. A negative deflection after an R wave is called an S wave. A 

second positive deflection after the S wave, if there is one, is called the U wave. 

Some QRS complexes do not have all three deflections. But irrespective of the 

number of waves present, they are all QRS complexes. QRS-complex is the 

largest-amplitude portion of the ECG [KH04]. Generally the amplitude of R 

wave is 1.6mV and the amplitude of Q-wave is 25% of the R-wave. Ventricular 

rate can be calculated by determining the time interval between QRS 

complexes. The duration of the QRS complex is normally 0.06 to 0.1 seconds.  

This relatively short duration indicates that ventricular depolarization normally 

occurs very rapidly.  A broad QRS complex with ‘RSR’ pattern in V1 

represents right bundle branch block. A broad QRS with an ‘M’ pattern in lead I 

represents left bundle branch block. The first negative deflection of a QRS 

complex is the Q wave. If the Q wave is > 2mm, it is considered to be 

pathological. 

T Wave 

The T-wave is the result of ventricular repolarization and is longer in 

duration than depolarization. The polarity of this wave normally follows main 

QRS deflection in any lead. The ventricles are electrically unstable during the 

period of repolarization extending from the peak of the T wave to its initial 

downslope. A stimulus (e.g. a run away heart beat called a premature beat) 
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falling on this vulnerable period has the potential to precipitate ventricular 

fibrillation- the so called R-on-T phenomenon. Generally the amplitude of a T-

wave ranges from 0.1 to 0.5 mV. Sometimes a small positive U wave may be 

seen following the T wave, which is considered to be a representation of the 

Papillary Muscle or Purkinje Fibers. A tall tented T waves could represent 

hyperkalaemia. T wave inversion can represent coronary ischaemia, previous 

infraction or electrolyte abnormality such as hypokalaemia. 

PR Interval 

The period of time from the onset of the P wave to the beginning of the 

QRS complex is termed as the P-R interval, which normally ranges from 0.12 to 

0.20 seconds in duration.  This interval represents the time between the onset of 

atrial depolarization and the onset of ventricular depolarization. If the P-R 

interval is > 0.2 sec, there is an AV conduction block, which is also termed a 

first-degree heart block if the impulse is still able to be conducted into the 

ventricles. A short PR interval represents rapid conduction across the AV node, 

usually, through an accessory pathway. A long P-R interval but preceding every 

QRS complex by the same distance is first degree AV block. A P-R interval that 

lengthens with each consecutive QRS complex, followed by a P wave which has 

no QRS complex and then by a P wave with a short PR interval is 2nd degree 

AV block. If the P waves that are followed by a QRS complex have a normal 

PR interval with the occasional non conducted P wave i.e., a P wave with no 
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subsequent QRS complex rhythm is said to be Mobitz type II 2nd degree AV 

block. 

RR Interval 

The time period between the R waves is called as R-R interval. Using this 

R-R interval [GM08] [TFS02] the heart beat rate (the number of R-R interval) 

and irregularity of a heart beat can be determined. A regular heart beat has 

uniform R-R interval values where as an irregular heart beat has variable R-R 

interval values. Generally a normal value of a heart rate may be in the range of 

60-100 beats/min. A slower rate than this value is called as bradycardia and a 

higher rate is called as tachycardia. That is any change in the normal heart rate 

indicates arrhythmia. 

ST Interval 

The isoelectric period (ST segment) following the QRS is the time at 

which the entire ventricle is depolarized and roughly corresponds to the plateau 

phase of the ventricular action potential.  The ST segment is important in the 

diagnosis of ventricular ischemia or hypoxia because under those conditions. 

The ST segment can become either depressed or elevated. There are basically 

three abnormalities seen in ST segment. A ST depression could signify cardiac 

ischaemia, a ST elevation could highly suggestive of infraction and a Saddle 

shaped concave ST segments usually seen across all the ECG suggesting a 

diagnosis of pericarditis. The period of time from the offset of the QRS complex 
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wave to the offset of the T wave is termed as the S-T interval, which normally 

has a value less than 0.30 seconds in duration.   

QT Interval 

The Q-T interval represents the time for both ventricular depolarization 

and repolarization to occur and therefore roughly estimates the duration of an 

average ventricular action potential.  This interval can range from 0.2 to 0.4 

seconds depending upon heart rate.  At high heart rates, ventricular action 

potentials shorten in duration, which decreases the Q-T interval.  Because 

prolonged Q-T intervals can be diagnostic for susceptibility to certain types of 

tachyarrhythmias, it is important to determine if a given Q-T interval is 

excessively long.  In practice, the Q-T interval is expressed as a corrected Q-T 

(QTc) by taking the Q-T interval and dividing it by the square root of the R-R 

interval (interval between ventricular depolarizations).  This allows an 

assessment of the Q-T interval that is independent of heart rate.  Normal 

corrected Q-T intervals are less than 0.44 seconds. A prolongation can lead to 

serious ventricular arrhythmia such as torsades de pointes.  

4.3 The Wavelet Transformation 

4.3.1 Introduction 

In signal analysis, there are number of different functions one can 

perform on that signal in order to translate it into different forms that are more 

suitable for different applications. The most popular function is the Fourier 
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transform that breaks down a signal into constituent sinusoids of different 

frequencies. That is, it transforms the signal from time based to frequency 

based. For many signals (stationary signal), Fourier transform is extremely 

useful because the signals frequency content is of great important. But the 

serious drawback with this approach is the time information is lost in 

transforming to frequency domain. So, it is not possible to tell when a particular 

event occurred through this approach. This drawback can be overcome by using 

Short Time Fourier Transformation (STFT). In a Short Time Fourier 

Transformation a signal is mapped in both frequency and time dimensions using 

a technique called Widowing. Though the time and frequency information is 

obtained at a time using this approach, it has a drawback that the size of the time 

window must be fixed for all frequencies. To overcome this drawback a most 

common method called Wavelet Transformation (WT) is used which it has a 

time window of variable size [LM07].  

A Wave is an oscillating function of time or space. Wavelets are localized 

waves and they have their energy concentrated in time or space. The Transform 

of a signal is another form of representing the signal. It does not change the 

information content present in the signal. A Wavelet Transformation involves 

convolving the signal against particular instances of the wavelet at various time 

scales and positions. Since changes in frequency can be modeled by changing 

the time scales and changes in time can be modeled by shifting the position of 
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the wavelet, both frequency and location of frequency can be modeled by using 

the Wavelet Transformation. That is a Wavelet transformation uses multi 

resolution technique by which different frequencies are analyzed with different 

resolutions. A Wavelet Transform at high frequencies gives good time 

resolution and poor frequency resolution, while at low frequencies the Wavelet 

Transform gives good frequency resolution and poor time resolutions. The most 

frequently and commonly used types of Wavelet Transformations are 

Continuous Wavelet Transformation (CWT) and the Discrete Wavelet 

Transformation (DWT).  

4.3.2 The Continuous Wavelet Transform (CWT) 

The Continuous Wavelet Transform was developed as an alternative 

approach to the Short Time Fourier transform, to overcome the resolution 

problem. The wavelet analysis is done in a similar way to the STFT analysis, in 

the sense that the signal is multiplied with a function similar to the window 

function in the STFT and the transform is computed separately for different 

segments of the time-domain signal. However, there are two main differences 

between the STFT and the CWT. 

• The Fourier Transforms of the windowed signals are not taken and 

therefore single peak will be seen corresponding to a sinusoid, i.e., 

negative frequencies are not computed.  
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• The width of the window is changed as the transform and is computed for 

every single spectral component, which is probably the most significant 

characteristic of the wavelet transform.  

The Continuous Wavelet Transform (CWT) is provided by equation 4.1, 

where x(t) is the signal to be analyzed,  (t) is the mother wavelet or the basis 

function. All the wavelet functions used in the transform are derived from the 

mother wavelet through wavelet translation (shifting) and scaling (dilation or 

compression).  

 

 The mother wavelet used to generate all the basis functions is designed 

based on some desired characteristics associated with that function. The 

translation parameter b relates to the location of the wavelet function as it is 

shifted through the signal. Thus, it corresponds to the time information in the 

wavelet transform. The scale parameter a defined as |1/frequency| and 

corresponds to frequency information. The Scaling either dilates or compresses 

a signal. Large scales (low frequencies) dilate the signal and provide detailed 

information hidden in the signal, while small scales (high frequencies) compress 

the signal and provide global information about the signal. The Wavelet 

Transform merely performs the convolution operation of the signal and the basis 

function. The above analysis becomes very useful in most practical applications. 

     …4.1 



85 

 

The high frequencies (low scales) do not last for a long duration, but instead, 

appear as short bursts, while low frequencies (high scales) usually last for entire 

duration of the signal. 

In order to recover the original signal x(t) from the transformed 

Continuous Wavelet Transformation, the following Inverse Continuous Wavelet 

Transform (ICWT) can be used. 

 

 is the dual function of (t). And the dual function should satisfy 

 
 

Sometimes, , where 

 

is called the admissibility constant and is the Fourier transform of . For a 

successful inverse transform, the admissibility constant has to satisfy the 

admissibility condition: 

 

It is possible to show that the admissibility condition implies that , so 

that a wavelet must integrate to zero.  

For practical implementation of Continuous Wavelet Transformation, it is 

computed over a finely discretized time-frequency grid. This dicretization 

   ... 4.2 

... 4.3 

... 4.4 

        ... 4.5 
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involves an approximation of the transform integral (summation) computed on a 

discrete grid of a scales and b locations. In general, the wavelet transform is 

approximated in this way over each time step for a range of wavelet scales. 

Therefore, there is a heavy computational burden involved in the generation of 

the CWT and a vast amount of repeated information is contained within this 

redundant representation of the Continuous Wavelet Transform T(a,b).  

4.3.3 The Discrete Wavelet Transform (DWT) 

The discretization of Continuous Wavelet Transform is called as Discrete 

Wavelet Transform (DWT). The Discrete Wavelet Transform employs a dyadic 

grid (integer power of two scaling in a and b), orthonormal wavelet basis 

functions and exhibits zero redundancy. Mathematically, a Discrete Wavelet 

Transformation can be computed in the following way. A general way to sample 

the parameters a, b is to use a logarithmic discretization of scale a and location 

b. To link b to a, we move in discrete steps to each location b, which 

proportional to a scale. This kind of discretization of the wavelet has the form 

 

where the integers m and n control the wavelet dilation and translation 

respectively, a0 is a specified fixed dilation step parameter set at a value greater 

than 1 and b0 is the location parameter which must be greater than zero. A 

common choice for discrete wavelet parameters a0 and b0 are 2 and 1 

          ... 
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respectively. This power-of-two logarithmic scaling of both the dilation and 

translation steps is known as the dyadic grid arrangement. The dyadic grid is 

perhaps the simplest and most efficient discretization for practical purposes and 

lends itself to the construction of an orthonormal wavelet basis. Bu substituting 

a0=2 and b0 =1 into equation 4.6, the dyadic grid wavelet can be written 

compactly as 

 

This has the same notation as the general discrete wavelet transformation. 

Here, ψm,n(t) will be used only to denote dyadic grid scaling with a0=2 and b0 

=1. Discrete dyadic grid wavelets are usually chosen to be orthonormal. That is, 

they are both orthogonal to each other and are normalized to have unit energy. 

This is expressed as  

  

 

 

This means that the information stored in a wavelet coefficient Tm,n 

obtained from the wavelet transform is not repeated elsewhere and allows for 

the complete regeneration of the original signal without redundancy. The 

corresponding family of orthonormal wavelets is an orthonormal basis. Using 

the dyadic grid wavelet of equation 4.8, the Discrete Wavelet Transform DWT 

can be written as: 

If m=m׳ and n=n׳ 

Otherwise. 
    ... 4.8 

       ... 4.7 
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where Tm,n is known as the wavelet (or detail) coefficient at scale and location 

indices (m, n). The distinct difference between the DWT and discretized 

approximations of the CWT is the discretization of the CWT required for its 

practical implementation involves a discrete approximation of the transform 

integral computed on a discrete grid of a scales b locations. The inverse 

Continuous Wavelet Transform is also computed as a discrete approximation. 

How close an approximation to the original signal is recovered depends mainly 

on the resolution of the dicretization used and with care usually a very good 

approximation can be recovered. On the otherhand, DWT defined in equation 

4.9 transforms integral remains continuous but is determined only on a 

discretized grid of a scales and b locations. We can then sum the DWT 

coefficients infinity over m and n to get the original signal back exactly. 

Orthonormal dyadic discrete wavelets are associated with scaling functions and 

their dilation equations. The scaling function is associated with the smoothing 

of the signal and has the form as wavelet, given by  

 

They have the property 

 

         ... 4.9 

         ... 4.10 

         ... 4.11 
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where �0,0(t)=�(t) is sometimes referred to as the father scaling function or 

father wavelet (cf mother wavelet). The scaling function is orthogonal to 

translations of itself, but not to dilations of itself. The scaling function can be 

convolved with the signal to produce approximation coefficients as follows.  

       
From the above, we can see that the approximation coefficients are 

simply weighted averages of the continuous signal factored by 2m/2. The 

approximation coefficients at a specific scale m are collectively known as 

discrete approximation of the signal at that scale. A continuous approximation 

of the signal at scale m can be generated by summing a sequence of scaling 

functions at this scale factor by the approximation coefficients as follows 

 

where xm(t) is a smooth, scaling-function-dependent version of the signal x(t) at 

scale index m. This continuous approximation approaches x(t) at small scales, 

i.e. as m→−∞ . A signal x(t) can then be represented using a combined series 

expansion using both the approximation coefficients and the wavelet (detail) 

coefficients as follows 

 

       ... 4. 12 

          ... 

 ... 4.14 
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  This equation shows that the original continuous signal is expressed as a 

combination of an approximation of itself at arbitrary scale index m0 added to a 

succession of signal details from scales m0 down to negative infinity. The signal 

details at scale m is defined as  

 

Hence, this equation can be written as 

 

From this equation, it is easy to show that 

 

which tells that the addition of  signal detail at an arbitrary scale (index m) to 

the approximation at that scale gives the signal approximation at an increased 

resolution (i.e. at a smaller scale, index m-1). This is called a multiresolution 

representation [Mal89]. 

Multi-Resolution Analysis using Filter Banks Theory: Filters are one of the most 

widely used signal processing functions. Wavelets can be realized by iteration 

of filters with rescaling. The resolution of the signal, which is a measure of the 

amount of detail information in the signal, is determined by the filtering 

operations and the scale is determined by upsampling and downsampling 

(subsampling) operations. 

   ... 4.15 

             ... 4.16 

   ... 4.17 
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The Discrete Wavelet Transform of a signal can be computed by passing 

it through the lowpass and highpass filters as shown in fig 4.2. This is called the 

Mallat algorithm or Mallat-tree decomposition [Mal89]. In the fig 4.2, X[n] 

represents the original signal to be filtered, where n is an integer, G0 represents 

the lowpass filer and H0 represents the highpass filter. At each level, the 

highpass filters produces detail information, d[n], while the lowpass filters 

associated with scaling function produces coarse approximations, a[n]. 

 

 

                   

 

 

 

 

 

 

 

 

 

 

 

 

With this approach, the time resolution becomes arbitrary good at high 

frequencies, while the frequency resolution becomes arbitrary good at low 
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Fig 4.2: Three-level Wavelet Decomposition Tree 
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Fig 4.3: Three-level Wavelet Reconstruction Tree 
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frequencies. The filtering of the decimation process is continued until the 

desired level is reached. The maximum number of levels depends on the length 

of the signal. The DWT of the original signal is then obtained by concatenating 

all the coefficients, a[n] and d[n], starting from the last level of decomposition. 

Fig 4.3 shows the reconstruction of the original signal from wavelet 

coefficients. Basically, the reconstruction is the reverse process of 

decomposition. The approximation and detail coefficients at every level are 

upsampled by two passes through the lowpass and highpass synthesis filters and 

then added. This process is continued through the same number of levels in the 

decomposition process to obtain the original signal. The Mallat algorithm works 

equally well if the analysis filters, G0 and H0, are exchanged with synthesis 

filters, G1 and H1. 

 

 

There are a number of basis functions that can be used as the mother 

wavelet for Wavelet Transformation. Since the mother wavelets produces all the 

wavelet functions used in the transformation through translation and scaling, it 

Fig 4.4:  Wavelet Families (a) Haar (b)Daubachies4 (c)Coiflet1 (d)Symlet2 
       (e) Mayer (f) Morlet (g)Mexican Hat 
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determines the characteristics of the resulting Wavelet Transform. Fig 4.4 

illustrates some of the commonly used wavelet functions. The Haar wavelet is 

one of the oldest and simples wavelet. Daubaches wavelets are the most popular 

wavelets. The Haar, Daubeches, Symlets and Coiflets are compactly supported 

orthogonal wavelets. The wavelets are chosen based on their shape and their 

ability to analyze the signal in a particular application. 

4.4 Automatic Extraction of ECG Features using Discrete Wavelet 
Transform 

 

4.4.1 Introduction 

One of the clinical tests performed to diagnose Congenital Heart Septum 

Defect is through Electrocardiogram signals. In order to diagnose Congenital 

Heart Septum Defect based on ECG signals, a physician analyzes and extracts 

the features like the amplitudes of P wave, QRS complex and T waves and the 

time intervals between P-R, R-R S-T and Q-T of the waves. Since an ECG may 

have different lengths and being a non-stationary signal and the irregularity may 

not be periodic instead it can be shown up at any interval of the signal, it is 

difficult for a physician to analyze and to extract the features from ECG signal 

manually. In this module, an algorithm is developed to automatically analyze 

and to extract the features from ECG signals based on Discrete Wavelet 

Transform. The developed algorithm initially performs preprocessing of a signal 

in order to remove baseline drift (De-trending) and noise (De-noising) from the 

signal and then it uses the preprocessed signal for extracting the features from 
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the ECG signal automatically. By using developed algorithm, the accuracy of 

the analysis can increased and the analysis time of an ECG signal can be 

reduced. 

4.4.2 Material and Methods  

Dataset used 

The data set used for the present study is the Electrocardiogram signals, 

which are obtained from the MIT-BIH database via Physionet website [Phy] and 

stored in a text format. The MIT-BIH database contains many types of 

Electrocardiogram signals including both abnormal or unhealthy 

Electrocardiograms and normal Electrocardiograms, which are sampled at 

different rates. For example record 16272 is originally sampled at 128 Hz, 

record 30 was sampled at 250 Hz and record 113 was sampled at 360 Hz. 

Therefore, to process all the signals uniquely, all the samples must be resampled 

at 360 Hz before processing the ECG signal. ECG signals of length 30 minutes 

duration are selected for the present study. But while processing only 10 

seconds of the data is used.  

Method 

In the present module, to automatically extract ECG features, an 

algorithm is developed based on the Discrete Wavelet Transform. The 

processing steps involved in the developed algorithm are as follows: 
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• Initially the original ECG signal is decomposed into 8 levels using 

Discrete Wavelet Transform and Dabachies6 (db6) as the mother wavelet. 

Then by using the Inverse Discrete Wavelet Transform, the individual 

decomposed components are reconstructed. Now based on these 

individual reconstructed components of the ECG signal, the features are 

extracted. 

• Before extraction of ECG features, the signal must be preprocessed in 

order to have signal without baseline drift and noise. 

• Since the low frequency components causes for a baseline drift, low 

frequency reconstructed components must be deducted from the original 

ECG signal to remove baseline drift. 

• Similarly, in order to remove noise, the high frequency reconstructed 

components (which causes for noise) must be deducted from the de-

trended ECG signal. 

• Now, the preprocessed ECG signal is used for extracting ECG features. 

The detailed description of the developed algorithm along with the 

experimental results is shown in the following section. 

4.4.3 Extraction of ECG Features  

In order to extract ECG features, the developed algorithm decomposes 

the obtained original ECG signal into corresponding Approximation and Detail 

coefficients up to 8 levels using Discrete Wavelet Transformation. The mother 
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wavelet or basis function that is used in the decomposition is Dabachies6 (db6) 

[MAA05]. The decomposed approximation and detail coefficients of the signal 

are cA1, cA2 . . . , cA8 and cD1, cD2. . . ,cD8 . The decomposed signal is then 

reconstructed to get original ECG signal components by using Inverse Discrete 

Wavelet Transformation (IDWT). The reconstructed approximation and detail 

coefficients of the signal are A1, A2 . . . ., A8 and D1, D2, … D8.  Among these 

components, the components A8 and D8 have the lowest frequencies, the 

components A1 and D1 have the highest frequencies and between of these 

components have from lower to higher frequencies. Now, the obtained 

individual reconstructed ECG components are used for both preprocessing and 

extracting ECG features. The developed algorithm is implemented in MATLAB 

7.3 using GUI feature. In the present module, in order to test the developed 

algorithm a Record No 103 of MIT-BIH Arrhythmia is selected. The original 

ECG signal of length 800 samples for Record No 103 of MIT-BIH Arrhythmia 

is shown in fig 4.5.   
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 Fig 4.5: The original ECG signal of Record No 103 of MIT-BIH Arrhythmia 
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After decomposition, the individual reconstructed components of the 

ECG signal of length 3600 samples are shown in fig 4.6.  Now the obtained 

components are used for both preprocessing and extracting the features from the 

ECG signal. 

Individual Reconstructed Approximation and Detail Components
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4.4.3.1 ECG Preprocessing  

When an Electrocardiogram is recorded many kinds of noises are also be 

recorded due to very low and high frequencies [VRAP06] , which causes an 

ECG to have baseline drift and noise in the signal and is very difficult to clinical 

diagnosis. For proper diagnosis of ECG, it is necessary to remove noise from 

the signal [AK10]. A process of removing the baseline drift of a signal [Daq05] 

is called de-trending and a process of removing the noise [UMV09] of a signal 

is called de-noising. Both of these processes come under the preprocessing of an 

Fig 4.6 : Reconstructed  Approximation and Detail Components of the 
                          ECG signal 
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ECG signal. Once the signal is preprocessed then it can be used for feature 

extraction.  

ECG Baseline Drift Removal 

Since the low frequency components cause the signal for baseline 

shifting, these components must be deducted to have a signal without baseline 

drift. In this study, the low frequency components of a decomposed signal are 

A8 and D8.  

Therefore, to remove the baseline drift, the developed algorithm removes 

these components from the original ECG signal. Thus, the problem of baseline 

shifting is solved. The original and de-trended ECG signal of length 800 

samples is shown fig 4.7.  
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ECG De-noising 

Though the low frequency components are removed from the original 

signal, still it may have noise due to high frequency components. In order to 

remove the noise from ECG signal, it is required to identify which components 

contain the noise and then these identified components are removed from the 

Fig 4.7: The De-trended ECG Signal 
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de-trended signal. When a signal is decompose by DWT, the successive 

approximations becomes less and less noisy as more and more high frequency 

information is filtered out of the signal. But, in discarding all the high frequency 

information many of the original signal’s sharpest features are lost. Optimal de-

noising requires a more subtle approach called thresholding [MK08]. This 

involves discarding only the portions of the details that exceed a certain limit. 

The developed algorithm uses global thresholding option, which is derived from 

Donoho-Johnstone fixed form thresholding strategy for an un-scaled white 

noise. By using the developed algorithm, the identified high frequency 

components are D1, D2. These components must be filtered by applying a 

threshold. Then the thresholded components are removed from the de-trended 

signal. The de-noised ECG signal of length 800 samples is shown in fig 4.8. 
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4.4.3.2 Extraction of ECG Features 

QRS complex 

Since the peaks of R waves in the ECG signal have the largest amplitude 

values among the other waves, identifying the QRS complexes of an ECG 

Fig 4.8: De-noised ECG signal 
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signal by using the developed algorithm is an easy task. To detect the R waves, 

the developed algorithm removes the very low and very high frequency 

components from the ECG signal.  In this study, the detail components of D3, 

D4 and D5 show the QRS complex more clearly comparing with other 

components. Therefore, the algorithm keeps these components and removes the 

other low frequency and high frequency components. The R waves of ECG 

signals are shown in fig 4.9.  
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To make the R wave more noticeable, the obtained signal is squared, 

which is shown in fig 4.10. Since the obtained signal has pseudo peaks, a lower 

limit is applied to remove these pseudo peaks (thresholding), which is shown in 

fig 4.11. Once the R-peaks are identified then it can be used by the developed 

algorithm to automatically calculate the amplitude values of R waves and the 

time intervals between them. The amplitude values of R waves for ECG record 

103 of arrhythmia, determined by the developed algorithm are 1.694, 1.7132, 

1.7914, 1.6916, 1.7963, 1.6179, 1.8395, 1.8736, 1.7154, 1.6519 and 1.7910. 

Fig 4.9: R-waves of the ECG Signal 
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Once the R peaks are determined then based on these peaks the Q and S 

peaks are detected. Generally, the Q and S peaks occurs about the R peak within 

0.1 second. Therefore, to make the peaks more noticeable, the developed 

algorithm removes all the detail components of the signal up to D5 from the 

signal. The approximation signal is remained same. The first negative deflection 

to the left of the R-peak is denoted as Q-peak and the first negative deflection to 

the right of the R peak is denoted as S peak. In the fig 4.12, the left point about 

the R peak denotes the Q-peak and the right point about the R peak denotes the 

S peak. Once the R-peaks are identified then it can be used by the developed 

Fig 4.10: The Power of R-waves of the ECG Signal 
 

Fig 4.11: Thresholded R-waves of the ECG Signal 
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algorithm to calculate the amplitude values of Q and S waves automatically. 

The amplitude values of the Q waves and S waves for ECG record 103 of 

arrhythmia are -0.3206, -0.3694, -0.3083, -0.3087, -0.3643, -0.3314, -0.3235,-

0.3095, -0.3495, -0.3456, -0.2884 and -0.3493, -0.4266, -0.4398, -0.4697, -

0.281, -0.3296, -0.4012, -0.3836, -0.4458, -0.4190, -0.3620. 

0 500 1000 1500 2000 2500 3000 3500 4000
-0.5

0

0.5

1
Q-S Waves of the ECG Signal

 

 

P and T-waves  

The extreme of the signal before and after zero crossings about QRS 

complex denotes the P and T waves. The detected zero crossings of the signal 

about the P and T peaks are the onset and offset points of the waves 

respectively. To make the P and T peaks more noticeable, the developed 

algorithm keeps the details D4 to D8, which are shown in fig 4.13. Once the P 

and Q peaks are identified then it can be used by the developed algorithm to 

calculate the amplitude values of P and T waves automatically.  

The amplitude values of the Q waves and S waves for ECG record 103 of 

arrhythmia are 0.0448, 0.0873, 0.0188, 0.0795, 0.0607, 0.0369, 0.0700, 0.0453, 

Fig 4.12: The Q and S-waves of the ECG Signal 
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0.0864, 0.0171, 0.0493 and 0.3083, 0.3220, 0.3032, 0.3009, 0.3582, 0.3067, 

0.3313, 0.2967, 0.3400, 0.3324, 0.2821. 
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RR-Interval  

The R-R interval of an ECG signal is the time interval between the R-

waves. In order to determine the R-R interval of a signal, the developed 

algorithm determines the difference between the two consecutive R wave 

locations based on the identified R waves. The R-R interval values in terms of 

the seconds obtained through the developed algorithm for the Record No 103 

are 0.8639, 0.8333, 0.8444, 0.8417, 0.8667, 0.9250, 0.8778, 0.8333, 0.8333 and 

0.8417. Since these interval values are not constant throughout the signal, it 

indicates the abnormality of a heart rate. Also the number of heart beats per 

minute calculated (number of R-R intervals) by the developed algorithm is 60. 

P-R Interval  

Once the P and R waves are identified, it can be used by the developed 

algorithm to determine P-R intervals. In order to determine P-R interval, the 

developed algorithm determines the interval between the onset of P waves and 

Fig 4.13: The P and T waves of ECG Signal 
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onset of Q waves. The P-R intervals determined by the developed algorithm for 

record no 103 of arrhythmia are 0.1833, 0.1833, 0.1250, 0.1278, 0.1722, 0.1833, 

0.1778, 0.1139, 0.1806, 0.1139 and 0.1806. 

S-T Interval 

Once the S and T waves are identified, it can be used by the developed 

algorithm to determine S-T intervals. In order to determine S-T interval, the 

developed algorithm determines the interval between the onset of S waves and 

offset of T waves. The S-T intervals determined by the developed algorithm for 

record no 103 of arrhythmia are 0.3222, 0.3028, 0.3250, 0.3194, 0.3306, 0.3611, 

0.3278, 0.3222, 0.3194, 0.3472 and 0.3472. 

Q-T Interval 

Once the Q and T waves are identified, it can be used by the developed 

algorithm to determine Q-T intervals. In order to determine Q-T interval, the 

developed algorithm determines the interval between the onset of Q waves and 

offset of T waves. The Q-T intervals determined by the developed algorithm for 

record no 103 of arrhythmia are 0.4167, 0.3778, 0.4750, 0.4528, 0.4278, 0.4556, 

0.4361, 0.4639, 0.4167, 0.5000 and 0.4417 

Missing of Waves 

Missing of the waves can be determined by the developed algorithm 

based the wave intervals. The missing of QRS complexes can be determined 

based the R-R interval values by checking whether there is any value with twice 
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the value of R-R interval. Similarly the missing of P wave  can be determined 

based the P-R interval values by checking whether there is any value with zero 

as P-R interval and the missing of T wave can be determined based on Q-T 

interval by checking whether there is any value with zero as Q-T interval. There 

are no missing waves determined by the developed algorithm in record No. 103 

arrhythmia. 

Inversion of waves 

The inversion of the waves can be determined by the developed algorithm 

based on the amplitude values of waves. An inversion in a QRS complex is 

determined by checking the sign of the R wave maximum amplitude values. A 

positive amplitude value indicates that the R wave is located above the zero 

crossings and has no inversion. A negative amplitude value indicates that the R 

wave is located below the zero crossings and has inversion. Similarly the sign of 

the P wave and T wave amplitudes are determined to check the inversion of the 

P wave and T waves. There is no inversion of the waves determined by the 

developed algorithm in record no 103 arrhythmia. 

Therefore, the developed feature extraction algorithm can be used by a 

physician to automatically analyze and to extract the features from ECG signals. 

The developed algorithm reduces the analysis time of a physician and also 

increases the accuracy of the ECG analysis. The proposed system is not only 



106 

 

used for ECG analysis, instead it can also be used to store and view the results 

of the ECG analysis for future reference. 

4.5 Decision Support System for Congenital Heart Septum Defect 
Diagnosis using Neural Networks based on ECG analysis 

  

4.5.1 Introduction 

Though the developed algorithm analyzes and extracts features 

automatically from the Electrocardiogram signals, still it may be difficult for a 

physician to diagnose Congenital Heart Septum Defect due to lack of 

subjectivity of a physician (clinician) or inexperience with the previous cases of 

the physicians. This may cause the inaccuracy of the diagnosis and may 

increases the time delay of the diagnosis.  

Therefore, in order to improve the diagnosis accuracy and to reduce the 

diagnosis time, it has become a demanding issue to develop an efficient and 

reliable medical Decision Support System to support complicated diagnosis 

decision process. Since the Neural Networks have shown great potential to be 

applied in the development of medical Decision Support System for diagnosis 

of Heart Diseases in the present study also, a Decision Support System is 

developed to perform the Congenital Heart Septum Defect Diagnosis 

classification based on the ECG features. 

4.5.2 Materials and Methods 

Parameters used 
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#No Attribute Name Description Allowed Values 

1 Age Patients age Continuous 
 

2 Gender Patients gender Continuous 
 

3 Systolic B.P Systolic Blood Pleasure Continuous 
 

4 Diastolic B.P Diastolic Blood Pleasure Continuous 
 

5 Heart Rate Number of heart beats (bpm) Continuous 
 

6 P wave missing Missing of P waves in the ECG signal Binary 
 

7 QRS complex missing Missing of QRS complex in the ECG signal 
 

Binary 

8 T wave missing Missing of T wave in the ECG signal Binary 
 

9 P wave inversion Inverse of P waves in the ECG signal Binary 
 

10 QRS complex inversion Inverse of QRS complex in the ECG signal 
 

Binary 

11 T wave inversion Inverse of T wave in the ECG signal Binary 
 

12 P wave amplitude Amplitude of the P wave Continuous 
 

13 Q wave amplitude Amplitude of the Q wave Continuous 
 

14 R wave amplitude Amplitude of the R wave Continuous 
 

15 S wave amplitude Amplitude of the S wave Continuous 
 

16 T wave amplitude Amplitude of the T wave Continuous 
 

17 RR interval Interval between the two R waves Continuous 
 

18 Irregular Heart Beat Indicates the irregularity of the heart beat 
 

Binary 

19 PR interval Interval between the P wave and R wave 
 

Continuous 

20 ST interval Interval between the S wave and T wave 
 

Continuous 

21 QT interval Interval between the P wave and R wave    Continuous 
 

 

 

The parameters that are used to perform Congenital Heart Septum Defect 

Diagnosis classification based on ECG features are the amplitude values of P, 

Table 4.1: Parameter Names, Description and their allowed Values 
                    of DSS for CHSD Diagnosis based on ECG Signal features 
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QRS complex and T waves and the times interval values of P-R, R-R, S-T and 

Q-T. In the present study a total of 200 samples are used, each sample is having 

a set of 13 input parameters and one output parameter. The parameter names 

along with the description and their allowed values are represented in table 4.1. 

Method 

In the present study, in order to develop a Decision Support System for 

Congenital Heart Septum Defect Diagnosis based on ECG Signal, at first, the 

ECG features are extracted from the obtained ECG signal by applying the 

developed ECG feature extraction algorithm. Then a Backpropgation Neural 

Network (discussed in section 2.2.7) is built based on the extracted ECG 

features along with the basic information of a patient as input nodes. The 

network is trained using a supervised Delta Learning Rule. The activation 

function used in this model is the sigmoid function. Once the network is trained, 

then it can be used to perform the diagnosis classification automatically for a 

new pattern. The user friendly Decision Support Systems are designed and 

implemented in MATLAB 7.3 with GUI features. The Decision Support System 

is developed not only for the diagnosis classification, but it can also be used to 

store and view the diagnosis result. The architecture of a Decision Support 

System for Congenital Heart Septum Defect Diagnosis based on ECG signal is 

shown in fig 4.14.  
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From the architecture, it shows that when the ECG signal of a patient is 

given as input by the user, the developed Decision Support System 

automatically analyzes, extracts features and performs the diagnosis 

classification automatically and displays the result. The developed Decision 

Support System also stores the diagnosis result automatically, which can be 

used to view for future reference. 

 

 

 

 

 

 

 

 

 

 

4.5.3 Experiments and results 

Experiment: 

The Decision Support System for Congenital Heart Septum Defect 

Diagnosis is designed and implemented in MATLAB 7.3 with GUI feature by 

using the Backpropagation Neural Network Model.  

 

Decision Support System 

Fig 4.14: Architecture of DSS for CHSD Diagnosis based on  
                            ECG signal features 
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In order to implement Backpropagation Network Model, initially a Feed 

Forward Neural Network is built with 13 input nodes, 4 hidden nodes and one 

output node. The input parameters used in this system are the age, gender, B.P, 

heart rate and the features extracted from the ECG by using the developed 

algorithm. The output parameter used in this system is to indicate result of the 

diagnosis in terms of either normal or abnormal. Once the network is built, then 

it can be trained by using a Delta Learning Rule. The activation function used in 

this model is the sigmoid function. 200 samples are collected and used to train 

network and test the network. Among these samples, 85% of the data are used 

for training and 15% of the data are used for testing purposes. Once the 

Network is trained using these samples then the developed Decision Support 

System does the classification automatically for a new case. The Error 

performance (Mean Squared Error) of the training network is shown in fig 4.15.  

 

 

 

 

 

 

 

 
Fig 4.15: The Error Performance of a training network of DSS for 
CHSD Diagnosis based on ECG Signal  features 
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The least MSE value for the present experiment is 0.0132. Since the 

Neural Network solutions will not depends on algorithmic solution instead it 

depends on examples of the previous cases, it gives more accurate results than 

the human diagnosis. 

The developed Decision Support System performs five types of 

operations. These are represented in terms of NEW, ANALYSIS, DECISION, 

STORE and VIEW pushbuttons. Pushbutton NEW is used to clear the screen 

(for entering new patient information), the pushbutton ANALYSIS is used to 

automatically extract the ECG features based on the developed algorithm and to 

display the results, the pushbutton DECISION is used to perform diagnosis 

classification automatically based on the selected parameters and to display the 

result, the pushbutton STORE is used to store the patient information along with 

the resultant value in terms of text format and the pushbutton VIEW is used to 

view the stored text file. 

The developed Decision Support System can be used by a physician to 

automatically diagnose Congenital Heart Septum Defect based on ECG signal 

features by giving the patient’s ECG signal as input (in terms of patient number) 

along with the basic information of a patient i.e., systolic B.P, diastolic B.P etc 

of a patient. The developed system reduces the diagnosis time of a physician 

and also increases the accuracy of the diagnosis. In addition to the diagnosis, the 
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proposed system also stores and retrieves the resultant values for future 

reference. 

Results:   

The developed Decision Support System is tested to diagnose record No 

103 of Arrhythmia Database. The original ECG signal of record No 103 viewed 

through the developed Decision Support System is shown in fig 4.16. In the 

figure 4.16, it shows that once the patient number is entered then by pressing the 

VIEW ORIGINAL ECG SIGNAL pushbutton, it automatically shows the 

corresponding original ECG signal. Now, to automatically analyze and to 

perform the diagnosis classification, the ANALYZE ECG SIGNAL pushbutton 

should be pressed as shown in fig 4.17. By using this System, once the patient 

number is entered then it automatically extracts the features from the ECG 

signal and displays the results by pressing the ANALYZE button. Finally, to 

perform the diagnosis classification automatically and to display the results, the 

pushbutton DECISION should be pressed. The results obtained through the 

developed Decision Support System for record No 103 Arrhythmia Database is 

shown in fig 4.17.     
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 The developed Decision Support System gives an accuracy of 100%, 

which is shown fig 4.18. The classification result of the experiment in terms of 

the confusion matrix is shown in table 4.2. 

 

 
   Fig 4.17:  The diagnosis result of an abnormal person using   

developed DSS for CHSD based on ECG signal features 

Fig 4.16: Viewing the Original ECG signal of Record No 103 of MIT-BIH  
Arrhythmia Database using developed Decision Support System 
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4.6 Conclusion 

Since an ECG signal may be of various lengths and the abnormality of a 

heart can be shown at interval of the signal, it is difficult for physicians to 

analyze and to extract the features automatically. Also it is a time consuming 

process. Therefore, the developed ECG feature extraction algorithm can be used 

by the physician to automatically analyze and to extract the ECG features. Also, 

the developed Decision Support System can be used to automatically diagnose 

Congenital Heart Septum Defect based on ECG features. The developed system 

reduces the diagnosis time and increases the accuracy of the diagnosis. Thus the 

performance of the developed system is increased. 
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Fig 4.18: A chart representing the classification accuracy of the DSS  
                     for CHSD based on ECG features 

Table 4.2: Confusion Matrix of DSS for CHSD Diagnosis 
 based on ECG features classification 




