CONTENTS

PREFACE
LIST OF PUBLICATIONS

Chapter I

1. INTRODUCTION TO THE EARTH'S UPPER ATMOSPHERE - IONOSPHERE

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Ionosphere</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Equatorial ionosphere</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Geomagnetic (S \alpha) variations</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Dynamo theory</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>Electrical conductivity of the ionosphere</td>
<td>9</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Layer conductivities in the ionosphere</td>
<td>12</td>
</tr>
<tr>
<td>1.6</td>
<td>Equatorial Electrojet (EEJ) and Counter electrojet (CEJ)</td>
<td>14</td>
</tr>
<tr>
<td>1.7</td>
<td>Plasma instabilities in the Equatorial Electrojet region</td>
<td>17</td>
</tr>
<tr>
<td>1.7.1</td>
<td>Equatorial Electrojet irregularities</td>
<td>17</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Two-stream (Farley-Buneman) instability</td>
<td>19</td>
</tr>
<tr>
<td>1.7.3</td>
<td>Gradient drift (Rayleigh-Taylor) instability</td>
<td>20</td>
</tr>
<tr>
<td>1.8</td>
<td>Equatorial Sporadic E (E(\alpha)) layers</td>
<td>22</td>
</tr>
<tr>
<td>1.9</td>
<td>Equatorial Spread F</td>
<td>24</td>
</tr>
<tr>
<td>1.10</td>
<td>F region dynamo</td>
<td>26</td>
</tr>
<tr>
<td>1.11</td>
<td>Dynamic and Electrodynamic effects</td>
<td>29</td>
</tr>
<tr>
<td>1.12</td>
<td>Present study</td>
<td>31</td>
</tr>
</tbody>
</table>

Chapter II

2. EXPERIMENTAL TECHNIQUES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>Principle of Backscatter radar</td>
<td>33</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Principle of coherent scattering</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>VHF backscatter radar at Thumba</td>
<td>37</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Height resolution of the radar</td>
<td>42</td>
</tr>
</tbody>
</table>
Chapter III

3. STUDIES ON THE ELECTRODYNAMICS/NEUTRAL DYNAMICS ASSOCIATED WITH THE ONSET OF EQUATORIAL SPREAD F 57-91

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.</td>
<td>Introduction - Equatorial Spread F 57</td>
</tr>
<tr>
<td>3.2.</td>
<td>Database and method of analysis 66</td>
</tr>
</tbody>
</table>
I. Role of meridional wind on the onset of ESF 68

3.3. Estimation of meridional wind and its variabilities 68

3.3.1. Case I: Occurrence of ESF with h'F > 300 km 69

3.3.2. Case II: Occurrence of ESF with h'F < 300 km 71

3.3.3. Case III: Occurrence of ESF on moderately disturbed days 71

3.4. Specific Observations 72

3.5. Results and discussions 72

II. Inhibition/development of ESF on magnetically disturbed days 76

3.6. A case study of the disturbed day events 76

3.7. Data and method of analysis 78

3.8. Results and discussions 79

3.9. Specific observations on international disturbed days 81

3.10. Summary and conclusions 85

III. Study on the variation of F-layer critical height (h'F) with solar activity and their control on the occurrence of ESF 87

3.11. Solar activity linked variabilities in the thermospheric meridional winds 87

3.12. Data and method of analysis 88

3.13. Results and discussion 89

Chapter IV

4. STUDIES ON THE EFFECT OF AUGUST 11, 1999 SOLAR ECLIPSE ON THE ELECTRODYNAMICS OF EQUATORIAL IONOSPHERE 92-110

4.1. Introduction 92

4.1.1. The solar eclipse phenomena 92

4.1.2. Effects of solar eclipse on the atmospheric phenomena 92

4.1.3. Overview of the solar eclipse phenomena 93

4.1.4. Solar eclipse of August 11, 1999 94

4.2. Data base 97

4.3. Ionosonde data 98

4.4. VHF backscatter radar - E-region effects 98

4.5. F-region effects 102

4.6. Results and discussion 103
Chapter V
5. LEONID METEOR SHOWER - INVESTIGATION OF ELECTRODYNAMIC PROCESS OF EQUATORIAL IONOSPHERIC E REGION BY USING LONG- LIVED METALLIC ION LAYER AS A TRACER 111-126

5.1. Introduction to Leonid meteor shower 111
 5.1.1. Effect of Leonids-99 meteor shower in the ionosphere 112

5.2. Leonid-99 campaign 116

5.3. Results
 5.3.1. Ionospheric data 117
 5.3.2. MST radar in meteor mode operation 118
 5.3.3. MST radar in the ionospheric mode of operation 118
 5.3.4. VHF backscatter radar data 119

5.4. Discussions 122

5.5. Conclusions 126

Chapter IV
6. STUDY OF TYPE II IRREGULARITIES DURING COUNTER ELECTROJET EVENTS ASSOCIATED WITH THE BLANKETING E\textsubscript{s} LAYER 127-144

6.1. Introduction 127

6.2. Data base 132

6.3. Experimental observations 134
 6.3.1. Characteristics of Type II Echoes during daytime - on Non CEJ days 134
 6.3.1.1. 7.7.2000 (Ap=5). A quiet day without the occurrence of blanketing E\textsubscript{s} layers 134
 6.3.2. Characteristics of Type II Echoes during daytime - on CEJ days 135
6.3.2.2. Case II: CEJ event on 20.6.2000 (Ap=6): Strong Type II signals and strong blanketing ES occurrence 137

6.3.2.3. Case III: CEJ event on 4.7.2000 (Ap=8): Strong Type II signals with very strong blanketing ES occurrence 138

6.3.2.4. Case IV: CEJ event on 6.7.2000 (Ap=5): Weak Type II signals with strong blanketing E, occurrence 139

6.4. Results and Discussions 140

6.5. Summary 143

Chapter VII

7.1. A STUDY OF EQUATORIAL IONOSPHERIC RESPONSE TO THE MAGNETIC STORM OF 3-11, NOVEMBER 1993 145-166

7.1. Introduction 145

7.1.1. Geomagnetic storms: Onset and development 145

7.1.2. Classification of magnetic storms 146

7.1.3. Different phases of magnetic storms 148

7.1.4. A case study of the geomagnetic storm of November 3-11, 1993 153

7.2. Data base 153

7.3. Results and discussion 154

7.3.1. Overview of geomagnetic storm and associated equatorial ionospheric storm 154

7.3.2. Morning counter electrojet and EIA 156

7.3.3. Daytime perturbations in F layer Peak height and density and EIA 158

7.3.4. Nighttime changes in F layer height and peak density 162

7.4. Summary and Conclusions 166

8. Chapter VIII

8.1. SUMMARY AND CONCLUSIONS 173

Scope for the future work 179

References 182