CHAPTER-7
CONCLUSION
The objectives of the present study were achieved with the establishment of assays for CRP measurement. Immunoassay designing and optimization in the widest sense is selection of antibody with appropriate specificity, affinity characteristics and the choice of label, stabilization of active ingredients, and selection of most effective reaction conditions. In our study we have selected antibody having best reaction kinetics and reaction rate, particles which give most optimum signal enhancement without compromising specificity and excess use of precious antibody. We have also selected best method for stable attachment of antibody on microparticle in cost effective manner and stabilized it in most appropriate buffer. Reaction conditions were standardised to optimize the multiple variables affecting the reproducibility, detection limit, analytical range, sensitivity, and reliability of Particle enhanced immunoassays. Our study will help society by making available affordable test yet reliable test for detection of CRP.

Development of high titer polyclonal antibody with high affinity and avidity will significantly affect cost reduction of reagent as antibody being is one of the most costly components in the reagent. Improving test reagent for use with whole blood can reduce testing turnaround time and enhance ease of use. CRP is widely required marker in physician office laboratory for diagnosis of inflammatory disease condition, further optimization of reagent as quantitative spot/dot test working with whole blood in which results can be obtained by using cell phone based digital image analysis software can add significant value in early diagnosis. It can expand use of this test in resource limited field stations by unskilled field staff and physician office laboratories.