CHAPTER II

EXTENSION OF NON-STANDARD ALMOST PERIODIC FUNCTIONS

2.1. In this chapter we shall prove an extension theorem of almost periodic functions in the context of Non-standard Analysis. We shall also give a necessary and sufficient condition that a set of Non-standard almost periodic functions (n.s.a.p.f.) be compact.

In order to prove the theorem, certain idea from the theory of Non-standard Analysis will be needed. We begin, therefore, with some abstract definitions and theorems and specialize them to apply to the problems at hand.

2.2. METRIC SPACES\(^{1)}\) : Let \(T \) be a metric space with distance function \(\delta(x,y) \). We assume that \(T \) and \(\mathbb{R} \) (\(\mathbb{R} \) are real numbers) are embedded, simultaneously, in a full structure \(*\mathbb{M} \) of \(\mathbb{M} \). We can develop the non-standard theory of the given metric space.

The topology of \(T \) is defined, by specifying as base the set of all open balls \(B \), where \(B = \{ q : \delta(p,q) < r \} \) for a point \(p \) in \(T \) and a positive real \(r \).

* Iseki, K.; Sharma, P.L. and Sharma, N.C. \((1) \)
\(1) \) Robinson, A. \((1) \)
For any point \(p \) in \(\ast T \) we define the monad of \(p \), \(\mathcal{M}(p) \) as the set of all points \(q \) such that \(\rho(p, q) \) is infinitesimal. Distinct monads are disjoint. We write \(p \bowtie q \) if \(\rho(p, q) \bowtie 0 \) i.e., if \(q \in \mathcal{M}(p) \).

A point \(p \) in \(\ast T \) will be called finite if there exists a standard point \(q \) such that \(\rho(p, q) \) is finite.

A metric space is bounded if there exists a real number \(m \), such that \(\rho(p, q) \leq m \) for all points \(p \) and \(q \) in the space.

Theorem 2.2.1. A metric space is bounded if and only if all points of \(\ast T \) are finite.

Theorem 2.2.2. (standard) A compact metric space is bounded.

2.3. **Sequences of functions. Compact mapping**: Let \(\{ f_n(x) \} \) be a sequence of functions which are defined on a set of points \(B \) in the metric space \(T \) and whose range is the metric space \(S \). According to the classical definition \(\{ f_n(x) \} \) converges on \(B \), to a function \(f(x) \), if for every positive \(\varepsilon \) there exists number \(\delta = \delta(\varepsilon) \) such that \(\rho(f(p), f_n(p)) < \varepsilon \) for all \(p \) in \(B \) and for all \(n > \delta \).
Theorem 2.3.1. The sequence of standard functions \(\{ f_n(x) \} \) converges to the standard function \(f(x) \) uniformly on \(BC \subseteq T \) (and hence on \(*B) \) if and only if \(f(p) \preceq f_n(p) \) for all \(p \in *B \) and for all infinite \(n \).

Working with standard notions, let \(\{ f_n(x) \} \) be a sequence of functions which map a metric space \(T \) into a compact metric space \(S \). Suppose the sequence is uniformly equi continuous on \(T \). That is to say, for every \(\epsilon > 0 \) there exists \(\delta > 0 \) such that \(\rho(f_n(p), f_n(q)) < \epsilon \) provided \(\rho(p, q) < \delta \), \(n = 0, 1, 2, \ldots \).

Passing from \(M \) to \(*M \), we see that the condition of uniform equicontinuity affirms that for given standard \(\epsilon > 0 \) there exists a standard \(\delta > 0 \) such that \(\rho(p, q) < \delta \) implies \(\rho(f_n(p), f_n(q)) < \epsilon \) for any points \(p, q \) in \(*T \) and for any natural number \(n \), finite or infinite. This shows that \(f_n(x) \) is uniformly \(S \)-continuous on \(*T \).

Theorem 2.3.2. (Standard Ascoli): Let \(\{ f_n(x) \} \) be an equi continuous sequence of functions which map a compact metric space \(T \) into a compact metric space \(S \). Then there exists a sequence of natural numbers \(n_j \), \(n_0 < n_1 < n_2 < \ldots \) such that the sequence \(\{ f_{n_j}(x) \} \), \(j = 0, 1, 2, \ldots \) converges uniformly on \(T \) to a function \(F(x) \) which is uniformly continuous on \(T \).
REMARK: If \(f_n(x) \) are real valued, Ascoli's theorem is proved on the assumption that the functions are uniformly and collectively bounded. The appropriate space \(S \) is provided by some finite interval of real numbers.

Theorem 2.3.3. (standard): Let \(\{ f_n(x) \} \) be a sequence of compact mapping from a metric space \(T \) into a complete metric space \(S \). Suppose that \(\{ f_n(x) \} \) converges to a function \(f(x) \) uniformly on \(T \). Then \(f(x) \) is compact.

We now give an extension theorem of almost periodic functions in the context of Non-standard Analysis.

Let \(E_1 \) be an arbitrary metric space, \(E_2 \) be a complete metric space. We consider the set of all bounded functions \(f : E_1 \rightarrow E_2 \). Let us assume that \(E_1, E_2 \) and \(M \) are embedded simultaneously in a full structure \(N \). Let \(*N \) be the enlargement of \(N \). Then it is easy to see that \(*N \) contains enlargements \(*E_1, *E_2 \) and \(*M \) of \(E_1, E_2 \) and \(M \) respectively.

For \(f, g \in M \), we define its distance by

\[
\rho(f, g) = \sup_{x \in *E_1} d(f(x), g(x))
\]
It can be easily seen that \(\rho(f,g) \) satisfies the well known axioms of a metric. Then \(M \) becomes a complete metric space as \(E_2 \) is complete.

DEFINITION 2.3.4. A function \(f(x) \ (x \in \mathbb{E}_1) \) is said to be non-standard almost periodic function (n.s.a.p.f.), if it is continuous on \(E_1 \) and if for every standard \(\varepsilon > 0 \), there exists a standard \(\delta > 0 \) such that every interval of length \(\delta \) contains an element \(y = y(\varepsilon) \in \mathbb{E}_1 \) for which the relation

\[d(f(x+y), f(x)) < \varepsilon \]

holds for all \(x \in \mathbb{E}_1 \).

Such an element \(y(\varepsilon) \) is called standard \(\varepsilon \)-periodic of the function \(f \).

It can easily be seen that every n.s.a.p.f. is bounded in metric space and therefore belong to the space \(M \).

DEFINITION 2.3.5. A set \(K \) of a metric space \(X \) is called standard \(\varepsilon \)-net for the set \(M \) of the space, if for every \(f \in M \), there exists an standard element \(f_\varepsilon \in K \) such that

\[\rho(f, f_\varepsilon) < \varepsilon. \]

2) Sobolev, V.J. and Lusternik, L.A.
Now we shall state and prove an extension of Hausdorff’s theorem3).

Theorem 2.3.6. The necessary condition for a set M of a metric space X is compact is that for every standard $\varepsilon > 0$, there exists a finite standard $\bar{\varepsilon}$-net for M. If, in addition, the space is complete, then it also satisfies the sufficient condition.

Proof: Necessary Condition: We assume that M is compact. Let f_1 be an arbitrary element of M. If $\rho(f, f_1) < \varepsilon$ for each standard ε and for all $f \in *M$, then we have found a finite standard ε-net. If, however, this is not the case, then there exists an element $f_2 \in M$ such that $\rho(f_1, f_2) \geq \varepsilon$. The statement 'for every element $f \in *M$ either $\rho(f_1, f) < \varepsilon$ or $\rho(f_2, f) < \varepsilon$' is true in $*M$ and hence, it is true in M. Then we have found a standard ε-net. If, however, this does not hold then there exists an element f_3 such that $\rho(f_1, f_3) \geq \varepsilon$, $\rho(f_2, f_3) \geq \varepsilon$

continuing in this way we determine an infinite sequence $\{f_n\}$ in M such that $\rho(f_1, f_j) \geq \varepsilon$

$\textbf{3)}$ Sobolev, V.J. and Lusternik, L.A. (1)
for \(i \neq j \). There arises two possibilities. Either the procedure ceases after the \(k \)-th step, i.e., for every \(f \in \mathbb{M} \), one of the relations

\[
F(f, f_i) < \varepsilon, \ i = 1, 2, \ldots, k
\]

holds in \(\mathbb{M} \) and hence in \(\mathbb{N} \), or we can continue indefinitely the present procedure. In first case we would make a finite standard \(\varepsilon \)-net of \(\mathbb{M} \). The second possibility can not occur, since otherwise we would obtain an infinite sequence \(\{ f_n \} \) in \(\mathbb{M} \) such that

\[
F(f_i, f_j) \geq \varepsilon
\]

for \(i \neq j \). Evidently \(\{ f_n \} \) would have no limit point in \(\mathbb{M} \) and hence in \(\mathbb{N} \) which would contradict the assumption that \(\mathbb{M} \) is compact.

Sufficient Condition: We assume that \(X \) is complete and that to every standard \(\varepsilon > 0 \), there exists a finite standard \(\varepsilon \)-net in \(\mathbb{M} \). For every \(\varepsilon \) \(\in \mathbb{N} \) we construct a finite standard \(\varepsilon \)-net \(\left[f_{1}^{(n)}, f_{2}^{(n)}, \ldots, f_{k}^{(n)} \right] \) for the set \(\mathbb{M} \). Then we choose arbitrary infinite subset \(S \) of \(\mathbb{M} \). Around every element \(f_{1}^{(1)}, f_{2}^{(1)}, \ldots, f_{k}^{(1)} \) of the standard \(\varepsilon_1 \)-net,
we place a closed sphere \(B_{\varepsilon_1} \) such that
\[
\rho(f, g) \leq 2 \varepsilon_1
\]
for every \(f, g \in B_{\varepsilon_1} \). Then every element of \(S \) is contained in one of these spheres. Since the number of the spheres is finite there is at least one sphere containing an infinite set of elements of \(S \). We denote this subset of \(S \) by \(S_1 \).

Around every element \(f_1(2) \), \(f_2(2) \), \(\ldots \), \(f_k(2) \) of the \(\varepsilon_2 \)-net we place a closed sphere \(B_{\varepsilon_2} \) such that
\[
\rho(f, g) \leq 2 \varepsilon_2
\]
for every \(f, g \in B_{\varepsilon_2} \). By the same reasoning as above, we obtain an infinite set \(S_2 \), situated in one of the constructed sphere \(B_{\varepsilon_2} \). Continuing this procedure, we obtain a sequence of subsets of \(S \): \(S_1 \supseteq S_2 \supseteq \ldots \supseteq S_n \) where the subset \(S_n \) is contained in a closed sphere \(B_{\varepsilon_n} \).

Now we choose an element \(f_1 \in S_1 \), an element \(f_2 \in S_2 \), different from \(f_1 \) an element \(f_3 \in S_3 \), different from \(f_1 \) and \(f_2 \) and so on and we obtain a sequence of
elements $S_\omega = \{ f_1, f_2, \ldots, f_n, \ldots \}$ which is a standard Cauchy net. $f_n \in S_n$ and $f_{n+p} \in S_{n+p}$ for every infinite natural number p implies

$$\rho(f_{n+p}, f_n) \leq 2 \epsilon_n \to 0 \text{ as } n \to \infty.$$

By the hypothesis, the space X is complete, so the sequence S_ω converges to an element $f \in X$. This proves the compactness of the set M.

COROLLARY 2.3.7. A set M of a complete metric space X is compact, if and only if, there exists a compact standard ϵ-net of M for every standard $\epsilon > 0$.

PROOF: Let K be a compact standard $\frac{\epsilon}{2}$-net of the set M. Applying the theorem 2.3.5. to K, we find that there exists a finite standard $\frac{\epsilon}{2}$-net K_0 of K. Then K_0 is a finite standard ϵ-net for K. For every $f \in \mathcal{M}$, there exists elements $f_1 \in K$ such that

$$\rho(f, f_1) < \frac{\epsilon}{2}.$$

Consequently, for every element $f \in \mathcal{M}$, there exists a standard f_2, such that

$$\rho(f, f_2) \leq \rho(f, f_1) + \rho(f_1, f_2) \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$
i.e., \(k_0 \) is a finite standard \(\varepsilon \)-net for \(M \). Since the space \(X \) is complete, we conclude by theorem 2.3.6. that \(M \) is compact.

We shall now prove the following:

Theorem 2.3.8. A set \(P \) of n.s.a.p.i. is compact in the sense of metric of \(M \) if and only if:

(i) The functions of the set \(P \) are uniformly bounded and equicontinuous.

(ii) For every standard \(\eta > 0 \), there exists a number \(\eta \) in the interval \((a,a+\eta)\) which is an standard \(\eta \)-period for all functions of the set \(P \).

Proof: Necessary Condition: (i) The proof of (i) can easily be deduced by the corresponding assertion of Ascoli's theorem (Theorem 2.3.2.).

(ii): Since \(P \) is compact, for every standard \(\eta > 0 \), there exists a finite standard \(\eta/3 \)-net for \(P \). Let us denote these elements by \(f_1, f_2, \ldots, f_n \). Then for every element \(f \) in \(*P \), there exists an element \(f_i (1 \leq i \leq n) \) in \(P \) such that

\[
\hat{f}(f, f_i) < \frac{\eta}{3}.
\]
There exists a number $h > 0$ in every interval $(a, a+\ell)$ which is an standard $\frac{\eta}{3}$ -net, for which the following statement is true in \P and hence in P. "For every $x \in \#E_1$ and for all f_i ($i = 1, 2, \ldots, n$),

$$d\left(f_i(x + h), f_i(x)\right) \leq \frac{\eta}{3}.$$

Since f_1 is an standard $\frac{\eta}{3}$ -net for P, there exists for every element $f \in \#P$, an element f_1 such that

$$d(f(x + h), f(x)) \leq d(f(x + h), f_1(x + h)) + d(f_1(x + h), f_1(x)) + d(f_1(x), f(x))$$

$$\leq \frac{\eta}{3} + \frac{\eta}{3} + \frac{\eta}{3} = \eta.$$

for $x \in \#E_1$.

Therefore h is an standard η -period for all f in \P. This completes the proof for the necessary part of the theorem.

Sufficient Condition: We assume that for a set P of n.s.a.p. f. (i) and (ii) are satisfied and we choose a standard $\eta > 0$.

Let $\ell = l(\eta)$ be determined such that every interval of length ℓ contains an standard η -period for every f in \P. To every f in \P, we associate a function \widehat{f} defined by
\[f(x) = \begin{cases}
 f(x) & \text{if } -l < x \leq l \\
 f(x - r_n) & \text{if } n \leq x < (n+1)l, \quad n = 1, 2, \ldots \\
 n \leq x < (n+1)l, \quad n = -1, -2, \ldots
\end{cases} \]

where \(r_n \) is an standard \(\eta \)-period for all \(f \) in \(P \), and its period lies in the interval \((nl, (n+1)l) \).

We denote the set of all \(\bar{f} \) by \(P_\eta \). Then by theorem 2.3.3, \(P_\eta \) is compact in the sense of uniform convergence in the interval \([-l, l]\). But since \(x - r_n \in [-l, l] \), then by the definition of \(\bar{f} \), a sequence of these functions which converges uniformly in \([-l, l]\) also converges in metric space \(E_1 \).

For arbitrary \(f \in \ast P \) and the corresponding \(\bar{f} \in P_\eta \),

\[d(f(x), \bar{f}(x)) = 0 \text{ if } -l < x < l \]

and

\[d(f(x), \bar{f}(x)) = d(f(x), f(x - r_n)) \]

if \(\begin{cases}
 -l < x < l & (n=1, 2, \ldots) \\
 n \leq x < (n+1)l & (n=-1, -2, \ldots)
\end{cases} \)
Since \(r_n \) is an standard \(\eta \)-period for \(f \), therefore, for any arbitrary \(x \), we have

\[d \left(f(x), \bar{f}(x) \right) < \eta. \]

Hence the compact set \(P_\eta \) forms an standard \(\eta \)-net for \(P \) in the space \(M \). By corollary 2.3.7., \(P \) is compact and therefore, we have shown that the condition (i) and (ii) are sufficient.