CONTENTS

LIST OF TABLES	vi
LIST OF FIGURES	vii-viii
ABBREVIATIONS	ix-xi
CHAPTER 1: INTRODUCTION	1-39
1.1 Groundnut	2
1.1.1 Genesis of cultivated groundnut	3
1.1.2 Morphological characteristics	4
1.1.3 Groundnut production statistics	4
1.1.4 Constraints to groundnut productivity	8
1.2 What is salinity and how plants tolerate it?	10
1.2.1 How plants counter salinity stress?	10
1.2.2 Ion homeostasis	12
1.2.2.1 Na ⁺ homeostasis at whole plant level	13
1.2.2.2 Na ⁺ homeostasis at cellular level	15
1.3 What is drought and how plants respond it?	17
1.3.1 How plants respond to drought at whole plant level?	18
1.3.2 Responses against the drought stress at cellular level	19
1.3.2.1 Functional proteins	19
1.3.2.2 Regulatory proteins	20
1.3.2.2.1 ABA-dependent signalling pathway	21
1.3.2.2.2 MAP Kinase pathway	25
1.3.2.2.3 Ca ²⁺ -dependent pathway	26
1.4 Genetic engineering of groundnut: strategies to improve stress	28
tolerance	
1.4.1 Groundnut tissue culture	29
1.4.2 Genetic transformation of groundnut	31
1.4.2.1 Biolistic mediated transformation	31
1.4.2.2 Agrobacterium-mediated transformation	32
1.5 Abiotic stress tolerance and ASR-1 gene	35

CHAPTER 2: MATERIALS AND METHODS	40-72
2.1 MATERIALS	40
2.1.1 Plant materials	40
2.1.2 Bacterial Strains	40
2.1.3 Plasmid and construct	40
2.1.4 Chemicals and consumables	41
2.1.5 Enzymes and reaction kits	42
2.1.6 Oligonucleotides used in the study	43
2.1.7 Media, buffers and solutions	43
2.1.8 Bacterial Growth Media	43
2.1.9 MS salts and B ₅ organic medium	44
2.1.10 Equipments	45
2.2 METHODS	46
2.2.1 Extraction of genomic DNA	46
2.2.2 Isolation promoter region of SbASR-1 gene	46
2.2.3 Purification of PCR products and ligation into pGEM-T	49
Easy vector	
2.2.4 Competent cell preparation	51
2.2.5 Extraction of recombinant plasmid DNA from E. coli	52
2.2.6 Determination of number of paralogues of SbASR gene	52
family and genomic organisation of SbASR-1 gene	
2.2.6.1 Probe synthesis	52
2.2.6.2 Southern blotting and hybridization	53
2.2.6.3 Genomic organisation of SbASR-1	54
2.2.7 In-silico analysis of SbASR-1 gene and its promoter	54
2.2.8 Optimization of regeneration protocol for A. hypogaea	55
2.2.8.1 Shoot induction	56
2.2.8.2 Shoot elongation	57
2.2.8.3 Rooting and hardening	57
2.2.9 Determination of lethal dose (LD ₅₀) of hygromycin	58
2.2.10 Isolation of pCAMBIA1301-SbASR-1 from E. coli and	58
mobilization into Agrobacterium strain	
2.2.11 Optimization of transformation protocol	59

2.2.11.1 Effect of phytohormone on transformation and	60
regeneration	
2.2.11.2 Phytohormone analysis of the transformed explants	61
2.2.12 Genetic transformation in de-embryonated cotyledons and	62
regeneration of transgenic plants	
2.2.13 Histochemical GUS assay	63
2.2.14 Molecular analysis	64
2.2.14.1 DNA extraction from transgenic plants	64
2.2.14.2 Determination of transgene copy number	64
2.2.14.3 Isolation of RNA from leaf tissues, cDNA synthesis	64
and RT-PCR	
2.2.15 Analysis of T1 transgenic lines	66
2.2.15.1 Plant germination and stress treatments	66
2.2.15.2 Estimation of photosynthetic pigments	66
2.2.15.3 Relative water content	67
2.2.15.4 Electrolyte Leakage	67
2.2.15.5 Estimation of free proline	68
2.2.15.6 Estimation of Lipid peroxidation	69
2.2.15.7 Estimation of Total Soluble Sugar, Reducing Sugar,	69
and Starch	
2.2.15.8 In-vivo localization of peroxide and superoxide	70
radicals	
2.2.15.9 Isolation of total RNA and Real-time quantitative	71
PCR	
2.2.16 Statistical analyses	72
CHAPTER 3: RESULTS	73-112
3.1 Characterization of SbASR-1 gene	73
3.1.1 Isolation of SbASR-1 promoter	73
3.1.2 Genomic organisation of SbASR-1 gene	73
3.1.3 <i>In-silico</i> analysis	74
3.1.4 Determination of number of paralogues in SbASR gene	79
family	

3.2 Optimization of regeneration protocol	84
3.3 Determination of lethal dose (LD_{50}) of hygromycin	87
3.4 Optimization of transformation protocol	88
3.4.1 Optimization of factors affecting transformation	89
3.4.2 Effect of phytohormone on transformation and regeneration	91
3.5 Transformation, regeneration, selection, elongation, grafting and	93
hardening of putative transgenic lines	
3.6 Confirmation of transgenic lines	96
3.6.1 Confirmation of transgenic lines with PCR	97
3.6.2Confirmation of transgenic lines with Southern hybridization	98
3.6.3 Confirmation of transgene expression in transgenic lines	98
3.7 Analysis of T1 transgenic lines	100
3.7.1 Estimation of photosynthetic pigments	101
3.7.2 Electrolyte leakage	105
3.7.3 Estimation of proline content	105
3.7.4 Relative water content (RWC)	105
3.7.5 Lipid peroxidation assay	107
3.7.6 Total soluble sugar, reducing sugar and starch content	107
3.8 In-vivo localization of peroxide and superoxide radicals	109
3.9 Isolation of total RNA and transcript expression	111
CHAPTER 4: DISCUSSION	113-134
4.1 Characterization of SbASR-1	114
4.2 Groundnut tissue culture	119
4.3 Optimization of hygromycin lethal dose (LD ₅₀)	120
4.4 Optimization of transformation parameters	121
4.5 Genetic transformation of groundnut	126
4.6 Confirmation of putative transgenic line	127
4.7 Analysis of T1 transgenic lines	128
4.7.1 Estimation of photosynthetic pigments	129
4.7.2 Electrolyte leakage and MDA contents	130
4.7.3 Estimation of proline	130
4.7.4 Relative water content	131

4.7.5 Total soluble and reducing sugar, starch content	131
4.7.6 <i>In-vivo</i> localisation of H_2O_2 and O_2^- radicals	132
4.7.7 Transcript expression analysis of genes coding for	133
antioxidative enzymes	
CHAPTER 5: SUMMARY AND CONCLUSION	135-140
REFERENCES	141-172
APPENDIX: PUBLICATIONS	i-ii