Table of contents

Acknowledgment i
List of table iv
List of figure vii
List of abbreviations x
Abstract xii

Chapter 1 General Introduction

1.1 Introduction 1
 1.1.2 History of Medicinal Plant 1
 1.1.2 Role of medicinal plant in primary health care 2
 1.1.3 Medicinal plant and health 3
 1.1.4 National status of herbal medicine 4
1.2 Diabetes Mellitus 4
 1.2.1 Epidemiology 5
 1.2.2 Pathophysiology 5
 1.2.3 Risk Factors Associated With Diabetes Mellitus 6
 1.2.3.1 Weight 6
 1.2.3.2 Family history 6
 1.2.3.3 Race 6
 1.2.3.4 Age 6
 1.2.3.5 Prediabetes 6
 1.2.4 Animal models of diabetes and prevention of diabetes 7
 1.2.4.1 Alloxan induced diabetes 7
 1.2.4.2 Streptozotocin induced diabetes 7
1.3 Rheumatism Arthritis 7
 1.3.1 Epidemiology 8
 1.3.2 Pathophysiology 8
 1.3.3 Risk Factors Associated With Rheumatoid Arthritis 8
 1.3.3.1 Genetics 9
 1.3.3.2 Environmental 9
 1.3.3.3 Hormonal 9
 1.3.4 Induction of arthritis 9
 1.3.4.1 CFA induced arthritis 9
 1.3.4.2 Collagen induced arthritis 9

Chapter 2 Aim and Objectives

Chapter 3 Review of literature

3.1 Introduction (*Aegle marmelos* (Corr.)) 13
 3.1.1 Vernacular name 13
 3.1.2 Description 13
 3.1.2.1 Macroscopic 13
 3.1.2.2 Morphology 14
 3.1.2.3 Habit 14
 3.1.3 Pharmacological 14
 3.1.4 Phytochemical Studies 16
3.2 Introduction (*Moringa Oleifera* (Lam.)) 19
 3.2.1 Vernacular name 19
 3.2.2 Description 19
 3.2.2.1 Macroscopic 19
 3.2.2.2 Morphology 20
4.3.2.2 Anatomy of Stem
4.3.2.3 Proximate analysis
 4.3.2.3.1 Ash value
 4.3.2.3.2 Extractive value
 4.3.2.3.3 Loss on drying

4.4 Pharmacognostical studies of *Paederia foetida* (Linn.)
 4.4.1 Material and method
 4.4.2 Result and discussion (*Paederia foetida* (Linn.))
 4.4.2.1 Morphological characters
 4.4.2.2 Anatomy of Stem
 4.4.2.3 Proximate analysis
 4.4.2.3.1 Ash value
 4.4.2.3.2 Extractive value
 4.4.2.3.3 Loss on drying

4.5 Pharmacognostical studies of *Melastoma malabathricum* (Linn.)
 4.5.1 Material and method
 4.5.2 Result and discussion (*Melastoma malabathricum* (Linn.))
 4.5.2.1 Morphological characters
 4.5.2.2 Anatomy of Stem
 4.5.2.3 Proximate analysis
 4.5.2.3.1 Ash value
 4.5.2.3.2 Extractive value
 4.5.2.3.3 Loss on drying

Chapter 5 Phytochemical study
5.1 Introduction
5.2 Material and method for *Aegle marmelos* (Corr.)
 5.2.1 Successive extractive value
 5.2.2 Qualitative phytochemical analysis
 5.2.2.1 Test for Alkaloid
 5.2.2.1.1 Dragendorff’s test
 5.2.2.1.2 Mayer’s test
 5.2.2.1.3 Hager’s test
 5.2.2.1.4 Wagner’s test
 5.2.2.2 Test for Glycoside
 5.2.2.2.1 Legal’s test
 5.2.2.2.2 Baljet’s test
 5.2.2.2.3 Keller-Killiani test
 5.2.2.2.4 Borntrager’s test
 5.2.2.3 Test for Saponin
 5.2.2.4 Test for Carbohydrate
 5.2.2.4.1 Molisch’s test
 5.2.2.4.2 Fehling’s test
 5.2.2.4.3 Benedict’s test
 5.2.2.5 Test for Phenolic Compound and Tannin
 5.2.2.6 Test for Flavonoid
 5.2.2.7 Shinoda’s Test
 5.2.2.8 Test for Steroid
 5.2.2.8.1 Libermann-Burchard test
 5.2.2.8.2 Salkowski test
 5.2.2.9 Test for Protein and Amino Acid
 5.2.2.9.1 Biurut test
 5.2.2.9.2 Xanthoprotein test
5.2.2.9.3 Millon’s test 57
5.2.2.10 Test for Triterpenoid 57
\hspace{1cm} 5.2.2.10.1 Noller’s test 57
5.2.2.11 Test for fixed oil and fat 57
\hspace{1cm} 5.2.2.11.2 Saponification test 57
5.2.2.12 Test for Gum and Mucilage 57
5.2.2.13 Test for Lignin 57
5.2.3 Isolation of stem bark of \textit{Aegle marmelos} (Corr.) 58
\hspace{1cm} 5.2.3.1 Extraction of plant material 58
\hspace{1cm} 5.2.3.2 Preparation of slurry 58
\hspace{1cm} 5.2.3.3 Packing of column 58
\hspace{1cm} 5.2.3.4 Extraction and isolation of compound 58
\hspace{1cm} 5.2.3.5 Characterization of isolated compound 58
5.2.4 Result and discussion 59
\hspace{1cm} 5.2.4.1 Preparation of \textit{Aegle marmelos} (Corr.) plant extracts 59
\hspace{1cm} 5.2.4.2 Qualitative Phytochemical Tests 59
\hspace{1cm} 5.2.4.3 Characterization of Isolated compound I (BG I) 61
\hspace{1cm} 5.2.4.4 Characterization of Isolated compound II (BG II) 68
5.3 Material and method for \textit{Moringa oleifera} (Lam.) 75
\hspace{1cm} 5.3.4 Extract standardization by HPTLC technique 75
\hspace{1cm} 5.3.4.1 Preparation of standard and sample solution 75
\hspace{1cm} 5.3.4.2 HPTLC instrumentation and procedure 75
5.3.4 Result and discussion 76
\hspace{1cm} 5.3.4.1 Preparation of \textit{Moringa oleifera} (Lam.) plant extracts 76
\hspace{1cm} 5.3.5.2 Qualitative Phytochemical Tests 76
\hspace{1cm} 5.3.5.3 HPLC analysis 76
5.4 Material and method for \textit{Paederia foetida} (Linn.) 79
\hspace{1cm} 5.4.4 Extract standardization by HPTLC technique 79
\hspace{1cm} 5.4.4.1 Preparation of standard and sample solution 79
\hspace{1cm} 5.4.4.2 HPTLC instrumentation and procedure 79
5.4.4 Result and discussion 80
\hspace{1cm} 5.4.4.1 Preparation of \textit{Paederia foetida} (Linn.) plant extract 80
\hspace{1cm} 5.4.4.2 Qualitative Phytochemical Tests 80
\hspace{1cm} 5.5.5.3 HPTLC analysis 80
5.5 Material and method for \textit{Melastoma malabathricum} (Linn.) 83
\hspace{1cm} 5.5.4 Extract standardization by HPTLC technique 83
\hspace{1cm} 5.5.4.1 Preparation of standard and sample solution 83
\hspace{1cm} 5.5.4.2 HPTLC instrumentation and procedure 83
5.5.4 Result and discussion 84
\hspace{1cm} 5.5.4.1 Preparation of \textit{Melastoma malabathricum} (Linn.) plant extract 84
\hspace{1cm} 5.5.4.2 Qualitative Phytochemical Tests 84
\hspace{1cm} 5.5.5.3 HPTLC analysis 84
6.1 Pharmacology activity 87
\hspace{1cm} 6.1.1 Antiarthritic activity of UFG 88
\hspace{1cm} 6.1.1.1 Animal 88
\hspace{1cm} 6.1.1.2 Acute toxicity study 89
\hspace{1cm} 6.1.1.3 Turpentine oil induced joint edema in rats 89
\hspace{1cm} 6.1.1.4 Formaldehyde induced arthritis in rats 89
\hspace{1cm} 6.1.1.5 Complete freund’s adjuvant induced arthritis in rats 90
\hspace{1cm} 6.1.1.6 Arthritis assessment in CFA rats 90
6.1.1.7 Measurement of biochemical analysis

6.1.1.8 Measurement of antioxidant marker
 6.1.1.8.1 Measurement of Superoxide Dismutase
 6.1.1.8.2 Measurement of Glutathione Peroxidases
 6.1.1.8.3 Measurement of Glutathione
 6.1.1.8.4 Measurement of malonaldehyde

6.1.2 Antidiabetic activity of UFG
 6.1.2.1 Assessment of compound in oral glucose tolerance test
 6.1.2.2 Induction of Diabetes
 6.1.2.3 Experimental design
 6.1.2.4 Biochemical analysis
 6.1.2.4.1 Determination of the hexokinase
 6.1.2.4.2 Determination of the Glycated hemoglobin level
 6.1.2.4.3 Determination of the glucose-6-phosphatase level
 6.1.2.4.4 Determination of fructose-1,6-bisphosphatase level
 6.1.2.5 Estimation of antioxidant enzymes
 6.1.2.5.1 Determination of the SOD activity
 6.1.2.5.2 Determination of the Catalase activity
 6.1.2.5.3 Determination of glutathione peroxidase activity
 6.1.2.5.4 Determination of malonaldehyde activity
 6.1.2.6 Histopathology
 6.1.2.7 Statistical analysis

6.1.3 Result and discussion
 6.1.3.1 Antiarthritic activity
 6.1.3.1.1 Acute toxicity study
 6.1.3.1.2 Effect of UFG on turpentine oil induced inflammation
 6.1.3.1.3 Effect of UFG on formaldehyde induced arthritis
 6.1.3.1.4 Effect of UFG on CFA developing arthritis
 6.1.3.1.5 Effect of UFG on clinical signs of arthritis
 6.1.3.1.6 Effect of UFG on hematological alterations
 6.1.3.1.7 Effect of UFG on the body weight
 6.1.3.1.8 Effect of UFG on antioxidant enzyme
 6.1.3.2 Antidiabetic activity
 6.1.3.2.1 Effect of UFG on oral glucose tolerance test
 6.1.3.2.2 Effect of UFG on blood glucose level
 6.1.3.2.3 Effect of UFG on biochemical parameters
 6.1.3.2.4 Effect of UFG on lipid abnormality
 6.1.3.2.5 Changes in body weight
 6.1.3.2.6 Effect of UFG on enzymatic antioxidant markers
 6.1.3.2.7 Histological examination

6.2.1 Antiarthritic activity of UFD
 6.2.1.1 Effect of UFD on acute toxicity
 6.2.1.2 Effect of UFD on turpentine oil induced inflammation
 6.2.1.3 Effect of UFD on formaldehyde induced arthritis
 6.2.1.4 Effect of UFD on CFA developing arthritis
 6.2.1.5 Effect of UFD on clinical signs of CFA induced arthritis
 6.2.1.6 Effect of UFD on hematological alterations
 6.2.1.7 Effect of UFD on the body weight
 6.2.1.8 Effect of UFD on antioxidant enzyme

6.2.2 Antidiabetic activity of UFD
 6.2.2.1 Effect of UFD on oral glucose tolerance test
 6.2.2.2 Effect of UFD on blood sugar level
6.2.2.3 Effect of UFD on biochemical parameters
6.2.2.4 Lipid abnormality
6.2.2.5 Effect of UFD on body weight
6.2.2.6 Effect of UFD on enzymatic antioxidant markers
6.2.2.7 Histological examination

6.3 Pharmacological activity of the *Moringa oleifera* (Lam.)
 6.3.1 Antiarthritic activity of *Moringa oleifera* (Lam.)
 6.3.3 Result and discussion
 6.3.3.1 Antiarthritic activity
 6.3.3.2 Acute toxicity study
 6.3.3.3 Effect on turpentine oil induced arthritis
 6.3.3.4 Effect on formaldehyde induced arthritis
 6.3.3.5 Effect on CFA- induced arthritis
 6.3.3.6 Effect on arthritis Assessment
 6.3.3.7 Effect on hematological parameters
 6.3.3.8 Effect on body weight
 6.3.3.9 Effect of MO on antioxidant enzyme

6.3.4 Antidiabetic activity of MO
 6.3.4.1 Effect of MO on oral glucose tolerance test
 6.3.4.2 Effect of MO on fasting blood glucose level
 6.3.4.3 Effect of MO on biochemical parameter
 6.3.4.4 Effect of MO on lipid profile
 6.3.4.5 Effect of MO on body weight
 6.3.4.6 Effect of MO on antioxidant marker
 6.3.4.7 Histological examination

6.4 Pharmacological activity of *Paederia foetida* (Linn.)
 6.4.1 Antiarthritic activity of *PF*
 6.4.3 Result and discussion
 6.4.3.1 Acute oral toxicity
 6.4.3.2 Effect of *PF* on turpentine oil induced arthritis
 6.4.3.3 Effect of *PF* on formaldehyde induced arthritis
 6.4.3.4 Effect of *PF* on CFA induced arthritis
 6.4.3.5 Effect of *PF* on CFA induced arthritis assessment
 6.4.3.6 Effect of *PF* on hematological parameters
 6.4.3.7 Effect of *PF* on body weight
 6.5.3.8 Effect of *PF* on Antioxidant enzymes

6.4.4 Antidiabetic activity of *PF*
 6.4.4.1 Effect of *PF* on oral glucose tolerance test
 6.4.4.2 Effect of *PF* on blood glucose level
 6.4.4.3 Effect of *PF* on biochemical parameter
 6.4.4.4 Effect of *PF* on lipid profile
 6.4.4.5 Changes in body weight
 6.4.4.6 Effect of *PF* on Antioxidant enzymes
 6.4.4.7 Histological examination

6.5 Pharmacological activity of *Melastoma malabathricum* (Linn.)
 6.5.1 Antiarthritic activity of *MM*
 6.5.3 Result and discussion
 6.5.3.1 Acute Toxicity study
 6.5.3.2 Effect of *MM* on turpentine oil induced joint edema
 6.5.3.3 Effect of *MM* on formaldehyde induced arthritis
 6.5.3.4 Effect of *MM* on CFA induced arthritis
 6.5.3.5 Effect of *MM* on Arthritis Assessment
6.5.3.6 Effect of MM on hematological parameter 184
6.5.3.7 Effect of MM on Body weight 187
6.5.3.8 Effect of MM on Antioxidant enzymes 187
6.5.4 Antidiabetic activity of MM 191
 6.5.4.1 Effect of MM on oral glucose tolerance test 191
 6.5.3.2 Effect of MM on blood glucose level 191
 6.5.3.3 Effect of MM on biochemical parameters 192
 6.5.3.4 Effect of MM on lipid abnormality 193
 6.5.3.5 Effect of MM leaves extract on body weight 194
 6.5.3.6 Effect of MM on Antioxidant enzymes 194
 6.5.3.7 Histological examination 197

Chapter 7 References 204
Chapter 7 Summary 217
Chapter 8 List of Publication 234