<table>
<thead>
<tr>
<th>CHAPTER No.</th>
<th>TITLE</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PREFACE</td>
<td>1-2</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>3-6</td>
</tr>
<tr>
<td>2</td>
<td>REVIEW OF LITERATURE</td>
<td>7-112</td>
</tr>
<tr>
<td>3</td>
<td>MATERIALS AND METHODS</td>
<td>113-159</td>
</tr>
<tr>
<td>4</td>
<td>OBSERVATION AND RESULTS</td>
<td>160-277</td>
</tr>
<tr>
<td>5</td>
<td>DISCUSSION</td>
<td>278-308</td>
</tr>
<tr>
<td>6</td>
<td>SUMMARY AND CONCLUSION</td>
<td>309-317</td>
</tr>
<tr>
<td></td>
<td>BIBLIOGRAPHY</td>
<td>318-351</td>
</tr>
</tbody>
</table>
DETAILED CONTENTS

<table>
<thead>
<tr>
<th>Brief Contents</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed Contents</td>
<td>ii-xii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiii-xvii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xviii-xxiii</td>
</tr>
<tr>
<td>PREFACE</td>
<td>1-2</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>3-6</td>
</tr>
<tr>
<td>2. REVIEW OF LITERATURE</td>
<td>7-112</td>
</tr>
<tr>
<td>2.1 History of Cattle feed</td>
<td></td>
</tr>
<tr>
<td>2.2 Definition of the problem</td>
<td></td>
</tr>
<tr>
<td>2.3 How Lignocellulosic biomass digested in rumen</td>
<td></td>
</tr>
<tr>
<td>2.4 Microbial and animal limitations to the fiber digestion and utilization</td>
<td></td>
</tr>
<tr>
<td>2.4.1 Structure and composition of plant material</td>
<td></td>
</tr>
<tr>
<td>2.4.2 Nature of the population densities of the predominant fiber-digesting microorganisms</td>
<td></td>
</tr>
<tr>
<td>2.4.3 Microbial factors that control adhesion and hydrolysis of fiber</td>
<td></td>
</tr>
<tr>
<td>a. Association and attachment of microorganisms to fiber</td>
<td></td>
</tr>
<tr>
<td>b. Hydrolytic enzymes of ruminal microorganisms</td>
<td></td>
</tr>
<tr>
<td>c. Microbial interactions</td>
<td></td>
</tr>
<tr>
<td>2.4.4 The factors affecting increase in the availability of nutrients in animals</td>
<td></td>
</tr>
<tr>
<td>a. Dry matter Intake by animal</td>
<td></td>
</tr>
<tr>
<td>b. Composition of dietary fiber</td>
<td></td>
</tr>
<tr>
<td>c. Physical, chemical and biological treatments of the diet</td>
<td></td>
</tr>
<tr>
<td>d. Effective fiber (eNDF) present in diet</td>
<td></td>
</tr>
<tr>
<td>e. Appropriate feeding strategy</td>
<td></td>
</tr>
<tr>
<td>f. Additives in diet</td>
<td></td>
</tr>
<tr>
<td>2.5 Effect of composition, structure and cross linking of lignin on digestibility</td>
<td></td>
</tr>
<tr>
<td>2.6 Lignocellulose: Structure and composition</td>
<td></td>
</tr>
<tr>
<td>2.6.1 Lignin</td>
<td></td>
</tr>
</tbody>
</table>
2.6.2 Hemicellulose

2.6.3 Cellulose

2.7 Bioconversion of Lignocellulosic Biomass into animal feed

2.7.1 Physical Pretreatment
 2.7.1.1 Milling (Mechanical Comminution)
 2.7.1.2 Extrusion
 2.7.1.3 Hydrothermal/ high pressure steaming
 2.7.1.4 Irradiation
 2.7.1.5 Pulse Electric Field Pretreatment (PEF)
 2.7.1.6 Pyrolysis

2.7.2 Chemical
 2.7.2.1 Acid pretreatment
 2.7.2.2 Alkaline hydrolysis
 2.7.2.3 Organosolve Process
 2.7.2.4 Oxidative Delignification
 2.7.2.5 Ozonolysis
 2.7.2.6 Alkaline peroxide
 2.7.2.7 Wet oxidation

2.7.3 Physiochemical treatment
 2.7.3.1 Ammonia Fiber explosion (AFEX)
 2.7.3.2 Steam explosion or autohydrohysis
 2.7.3.3 CO₂ explosion
 2.7.3.4 Liquid hot water (LHW) pretreatment
 2.7.3.5 Microwave chemical pretreatment

2.7.4 Biological treatment
 2.7.4.1 Bacteria
 2.7.4.2 Actinomycetes
 2.7.4.3 Lignin degrading fungi

2.7.5 Ligninolytic enzymes of white rot fungi
 2.7.5.1 Lignin Peroxidase (LiP)
 2.7.5.2 Manganese Peroxidase (MnP)
 2.7.5.3 Laccase
 2.7.5.4 Other Lignin Degrading Enzymes
2.8 Bioconversion of lignocellulosic biomass in to cattle feed by white rot fungi
 2.8.1 Chronology of animal feed development
 2.8.2 Large scale attempts for animal feed development
2.9 Assessment of nutritional upgradation of lignocellulosics through *In vivo* digestibility and growth trials
 2.9.1 Nutritional upgradation through Physical/ Chemical/ Physicochemical treatments
 2.9.2 Nutritional upgradation through Biological treatments
2.10 Major factors influencing the solid state bioconversion
 2.10.1 Molecular oxygen/aeration
 2.10.2 Moisture
 2.10.3 Humidity
 2.10.4 Temperature
 2.10.5 pH
 2.10.6 Inoculum/seed culture
 2.10.7 Light
 2.10.8 Particle geometry and substrate turning
 2.10.9 Period of SSF
 2.10.10 Nutritional supplements/ Nutrients amendment
 2.10.11 Nutritional characteristics of wheat straw/ cultivar/cultitype

3. MATERIALS AND METHODS

3.1 Study the diversity of lignin degrading fungi
 3.1.1 Isolation of various white rot fungi
 3.1.2 Sample processing
 3.1.3 Isolation and maintenance of fungi
 3.1.4 Growth study of white rot fungi on malt extract agar
 3.1.5 Colonization Ability of various white rot fungi to colonize wheat straw
 3.1.6 Solid state bioconversion of wheat straw by selected white rot fungi

3.2 Development of fungal inoculum
 3.2.1 Production of fungal inoculum on different substrates and media
3.2.1.1 Production of fungal inoculum on grains
3.2.1.2 Production of fungal inoculum on agroresidues/woody plant material
3.2.1.3 Production of fungal inoculum in liquid static culture/fungal mat
3.2.1.4 Production of fungal inoculum in shake cultures to develop fungal pellets
3.2.2 Colonization efficiency of different types of fungal inoculum on wheat straw
3.2.3 Parametric optimization of inoculum development (fungal pellets) under shaking cultivation conditions
 3.2.3.1 One factor at a time strategy (OFAT)
 3.2.3.1.1 Effect of Temperature and incubation time on production of fungal pellet biomass under shaking condition
 3.2.3.1.2 Effect of amount of primary culture on production of fungal pellet biomass under shaking cultivation condition
 3.2.3.1.3 Effect of agitation on production of fungal pellet biomass under shaking condition
 3.2.3.1.4 Effect of initial pH on production of fungal pellet biomass under shaking condition
 3.2.3.1.5 Effect of different carbon sources on production of fungal pellet biomass under shaking condition
 3.2.3.1.6 Effect of different inorganic nitrogen sources on production of fungal pellet biomass under shaking condition
 3.2.3.1.7 Effect of different organic nitrogen sources on production of fungal pellet biomass under shaking condition
 3.2.3.2 Optimization of inoculum development in the form of fungal pellets by Response Surface Methodology (RSM) using a central composite design
3.2.3.2.1 Statistical analysis and modeling
3.2.3.2.2 Adequacy of model
3.2.3.2.3 Validation of the models

3.2.4 Scale up of inoculum development

3.3 Fermentative production of animal feed

3.4 Nutritional and toxicological analysis of fermented feed
3.4.1 Animals and Housing
3.4.2 Chemicals
3.4.3 Feed composition for Rat trial experiments
3.4.4 Determination of Body weights, feed efficiency, dry matter (DM) utilization and nutrient digestibility studies
3.4.5 Mycotoxins in diets
3.4.6 Analysis of biological and blood samples
3.4.7 Statistical analysis

3.5 In vitro analysis for nutritional evaluation of fungal fermented feed (animal feed)

3.6 Statistical optimization of SSF of wheat straw
3.6.1 Optimization of nutritional parameters using one factor at a time strategy
3.6.1.1 Effect of different organic nitrogen sources on SSF of wheat straw by Crinipellis sp. RCK-1
3.6.1.2 Effect of different inorganic nitrogen sources on SSF of wheat straw by Crinipellis sp. RCK-1
3.6.1.3 Effect of different carbon sources on SSF of wheat straw by Crinipellis sp. RCK-1
3.6.1.4 Effect of different phenolics on SSF of wheat straw by Crinipellis sp. RCK-1
3.6.2 Screening of various physiological factors using Plackett burman design (PBD)
3.6.2.1 Effect of Straw Size
3.6.2.2 Effect of Critical depth
3.6.2.3 Effect of oxygen sparging
3.6.2.4 Effect of substrate to moisture ratio
3.6.2.5 Effect of temperature
3.6.2.6 Effect of initial pH on SSF of wheat straw
3.6.2.7 Effect of Humidity
3.6.2.8 Effect of substrate to inoculum ratio
3.6.2.9 Effect of incubation period

3.6.3 Optimization of physiological and nutritional parameters for maximizing the efficiency of SSF by *Crinipellis* sp. RCK-1 through Response Surface Methodology (RSM) using a Central Composite Design (CCD)
3.6.3.1 Statistical analysis and modeling
3.6.3.2 Adequacy of model
3.6.3.3 Validation of the models

3.7 Structural investigation of fermented feed
3.7.1 Scanning Electron Microscopy (SEM)
3.7.2 Transmission Electron Microscopy (TEM)
3.7.3 FTIR analysis
3.7.4 Powder XRD
3.7.5 Thermogravimetric analysis

3.8 Scale up of the animal feed development
3.8.1 Koji room
 3.8.1.1 Solid state fermentation in trays
 3.8.1.2 Solid state fermentation of wheat straw at floor of Koji Room (5 kg level)
 3.8.1.3 Solid state fermentation of wheat straw at floor of Koji Room (25 Kg level)
3.8.2 Solid state fermentation of wheat straw in a SSF Bioreactor
 3.8.2.1 Scale up of production of fungal inoculum
 3.8.2.1.1 Inoculum production in Shake flasks
 3.8.2.1.2 Production of fungal inoculum in 14 L bioreactor
 3.8.2.1.3 Production of fungal inoculum in 150 L bioreactor
 3.8.2.2 SSF of wheat straw in 7 L bioreactor
 3.8.2.3 SSF of wheat straw in 1200 L bioreactor

3.9 In vivo evaluation of fermented feed
3.9.1 *In vitro* gas production analysis of fermented feed for diet characterization
3.9.1.1 Effect of storage on nutritional quality of fermented Feed
3.9.1.2 Effect of grain replacement from concentrate in conventional diet of ruminants

3.9.2 *In vivo* digestibility trial
3.9.2.1 Feeding of Calves
3.9.2.2 Weight gain/weight loss measurement
3.9.2.3 Digestibility trial
3.9.2.4 Sampling of feed
3.9.2.5 Collection and sampling of feces
3.9.2.6 Statistical Analysis

3.9.3 Process economics studies for fermented feed

3.10 Analytical Methods
3.10.1 Dry matter loss
3.10.2 Cell wall compositional and proximate analysis
 3.10.2.1 Acid detergent fiber
 3.10.2.2 Estimation of Lignin
 3.10.2.3 Neutral Detergent Fiber and Hemicellulose
3.10.3 Degradation rate of cell wall component
3.10.4 Determination of percent efficiency of SSF
3.10.5 Determination of fungal biomass vis a vis ergosterol
3.10.6 Amino acid profile
3.10.7 Enzyme assays
 3.10.7.1 Endoglucanase (Carboxymethyl cellulase; CMCase)
 3.10.7.2 Laccase
 3.10.7.3 MnP
 3.10.7.4 LiP
 3.10.7.5 Xylanase

4. OBSERVATION AND RESULTS

4.1 Study the diversity of lignin degrading fungi
 4.1.1 Isolation of various white rot fungi
 4.1.2 Growth study of fungi on malt extract agar
4.1.3 Colonization ability of various fungi on wheat straw
4.1.4 Solid state bioconversion of wheat straw by selected white rot fungi
4.1.5 Determination of Cellulose/ Lignin (C/L) ratio
4.1.6 Lignocellulolytic enzyme production during solid state bioconversion of wheat straw by selected white rot fungi

4.2 Development of fungal inoculum

4.2.1 Production of fungal inoculum on different substrates and media
 4.2.1.1 Production of fungal inoculum on agro-residues and woody plant material
 4.2.1.2 Production of fungal inoculum on grains
 4.2.1.3 Production of fungal inoculum in liquid static culture
 4.2.1.4 Production of fungal inoculum in shake cultures to develop fungal pellets

4.2.2 Colonization efficiency of different types of fungal inocula on wheat straw

4.2.3 Parametric optimization of inoculum development in the form of fungal pellet under shaking cultivation conditions
 4.2.3.1 One Factor at a time (OFAT) method
 4.2.3.1.1 Effect of temperature and incubation time on production of fungal pellet biomass under shaking condition
 4.2.3.1.2 Effect of amount of primary culture on production of fungal pellet biomass under shaking cultivation condition
 4.2.3.1.3 Effect of agitation on production of fungal pellet biomass under shaking cultivation condition
 4.2.3.1.4 Effect of initial pH on production of fungal pellet biomass under shaking cultivation condition
4.2.3.1.5 Effect of different carbon sources on production of fungal pellet biomass under shaking cultivation condition

4.2.3.1.6 Effect of different carbon sources on production of fungal pellet biomass under shaking cultivation condition

4.2.3.1.7 Effect of different organic nitrogen sources on production of fungal pellet biomass under shaking cultivation condition

4.2.3.2 Optimization of inoculum development in the form of fungal pellets by response surface methodology using a central composite design

4.2.3.2.1. Adequacy of model

4.2.3.2.1. Validation of the models

4.2.4. Scale up of inoculum development

4.3. Fermentative production of animal feed

4.4. Nutritional and toxicological analysis of fermented feed

4.4.1. Total and Average body weight daily gain (ADG)

4.4.2. Feed, Dry matter and Water intake

4.4.3. Dry matter and Nutrient digestibility

4.4.4. Blood enzyme activity

4.4.5. Mycotoxins in diets

4.4.6. Mortality and Morbidity

4.5. In vitro analysis for nutritional evaluation of fungal fermented feed

4.6. Statistical optimization of SSF of wheat straw

4.6.1. Optimization of nutritional parameters using one factor at a time strategy

4.6.1.1. Effect of different organic nitrogen sources on SSF of wheat straw by Crinipellis sp. RCK-1

4.6.1.2. Effect of different inorganic nitrogen sources on SSF of wheat straw by Crinipellis sp. RCK-1

4.6.1.3. Effect of different carbon sources on SSF of wheat straw by Crinipellis sp. RCK-1
4.6.1.4. Effect of different phenolics on SSF of wheat straw by Crinipellis sp. RCK-1

4.6.2. Screening of various physiological factors using Plackett burman design (PBD)

4.6.3. Optimization of physiological and nutritional parameters for maximizing the ligninolytic potential of Crinipellis sp. RCK-1 under SSF by Response Surface Methodology (RSM) using a Central Composite Design (CCD)

4.6.3.1. Adequacy of model
4.6.3.2. Validation of the models

4.7. Structural characterization of unfermented and fermented wheat straw

4.7.1. Scanning Electron Microscopy
4.7.2. Transmission Electron Microscopy
4.7.3. FTIR analysis
4.7.4. Powder XRD
4.7.5. Thermo gravimetric analysis

4.8. Scale up of the animal feed development

4.8.1. Koji room

4.8.1.1. 500 g in stainless steel trays
4.8.1.2. SSF of wheat straw at 5 kg level at floor of Koji room
4.8.1.3. SSF of wheat straw at 25 kg level at floor of Koji room

4.8.2. SSF of wheat straw in Solid state Bioreactor

4.8.2.1. Scale up of production of fungal inoculum

4.8.2.1.1. In Shake flasks
4.8.2.1.2. Fungal inoculum production in 14 L bioreactor
4.8.2.1.3. Fungal inoculum production in 150 L bioreactor

4.8.2.2. SSF of wheat straw in 7 L bioreactor
4.8.2.3. SSF of wheat straw by Crinipellis sp. RCK-1 in 1200 L bioreactor

4.9. Evaluation of fermented feed

4.9.1. Chemical evaluation
4.9.1.1. Fungal biomass vis-à-vis ergosterol estimation
4.9.1.2. Amino acid profile
4.9.2. In vivo evaluation of fermented feed
 4.9.2.1. In vitro analysis of Fermented feed for diet characterization
 4.9.2.1.1. Effect of storage on nutritional quality of fermented Feed
 4.9.2.1.2. Effect of grain replacement from concentrate in conventional diet of ruminants
 4.9.2.2. In vivo digestibility trial
 4.9.2.2.1. Chemical composition of Ingredients of Feed and concentrate mixture
 4.9.2.2.2. Voluntary intake of nutrients
 4.9.2.2.3. Digestibility coefficients of nutrients
 4.9.2.2.4. Nutrient Density
 4.9.2.2.5. Growth Performance of calves
 4.9.2.2.6. Blood Biochemical analysis

4.9.3. Economic evaluation of the cost of fermented feed production

5. DISCUSSION

6. SUMMARY AND CONCLUSION

BIBLIOGRAPHY