1. INTRODUCTION
2. REVIEW OF LITERATURE
 2.1 Importance of Micronutrients
 2.2 Micronutrient deficiencies
 2.2.1 Deleterious effects of Micronutrient deficiency
 2.2.2 Prevalence of Micronutrient deficiency
 2.3 Approaches to combat Micronutrient deficiencies
 2.3.1 Government Initiatives against Micronutrient deficiency
 2.4 Food based approaches with focus on Green Leafy Vegetables
 2.5 Effect of processing techniques on Nutrient and Anti nutrient composition
 2.6 Value addition and Organoleptic evaluation
 2.7 Micro Nutritional estimations of value added products
 2.8 Effect of processing on shelf life of products
3. METHODOLOGY
 3.1 Phase I: Procurement and Preparation of green leafy vegetables
 (Daucus carota and Brassica oleracea)
 3.1.1 Selection and Procurement of the leaves
 3.1.2 Preparation of the leaves (Sorting and Washing)
 3.2 Phase II: Analysis of nutrient composition of fresh leaves
 3.2.1 Nutritional components: Iron (mg/100g), Calcium (mg/100g), Phosphorus (mg/100g), Beta carotene (µg/100g) and Vitamin C (mg/100g)
 3.2.2 Non nutritional components: Moisture (percent), Ash (g/100g), Phenol (mg/100g) and Fiber (g/100g)
 3.2.3 Anti nutritional components: Oxalic acid (mg/100g) and Phytic acid (mg/100g)
3.3 Phase III: The leaves were divided into two lots (Sample A: Blanched Dehydrated and Sample B: Non Blanched Dehydrated)
 3.3.1 Blanching
 3.3.2 Oven drying
 3.3.3 Storage of the processed leaves

3.4 Phase IV: Analysis of nutritional composition of Sample A (Blanched Dehydrated) and Sample B (Non Blanched Dehydrated)
 3.4.1 Nutritional components: Iron (mg/100g), Calcium (mg/100g), Phosphorus (mg/100g), Beta carotene (µg/100g) and Vitamin C (mg/100g)
 3.4.2 Non nutritional components: Moisture (percent), Ash (g/100g), Phenol (mg/100g) and Fiber (g/100g)
 3.4.3 Anti nutritional components: Oxalic acid (mg/100g) and Phytic acid (mg/100g)

3.5 Phase V: Product formulation
 3.5.1 Selection of the food product based on different methods of cooking and dual burden of malnutrition
 3.5.2 Standardization of control recipe and formulation of value added products

3.6 Phase VI: Organoleptic evaluation of recipes
 3.6.1 Selection of panel members
 3.6.2 Organoleptic evaluation of recipes

3.7 Phase VII: Effect of the cooking method on Micro Nutrient content [Beta carotene (µg/100g) and Iron (mg/100g)] of both control and most accepted recipe
 3.7.1 Selection of cooking method
 3.7.2 Preparation of products
 3.7.3 Micro Nutritional estimations

3.8 Phase VIII: Shelf life study
 3.8.1 Organoleptic evaluation
 3.8.2 Microbial analysis
 3.8.3 Peroxide value

3.9 Phase IX: Analysis of cost and nutritive value
 3.9.1 Cost analysis of the most accepted product
 3.9.2 Nutritive value of the most accepted product
3.10 Data analysis (ANOVA and t-test)

4. RESULTS

4.1 Phase I: Procurement and Preparation of samples
 4.1.1 Time taken in dehydration
 4.1.2 Yield

4.2 Phase II: Nutritional estimations of fresh green leafy vegetables

4.3 Phase III: Nutritional estimations of processed green leafy vegetables
 (Blanched dehydrated and Non blanched dehydrated)
 4.3.1 Nutritional components (Iron, Calcium, Phosphorus, Beta carotene and Vitamin C)
 4.3.2 Non nutritional components (Moisture, Ash, Phenol and Fiber)
 4.3.3 Anti nutritional components (Oxalic acid and Phytic acid)

4.4 Phase IV: Organoleptic evaluation of control and value added recipes
 4.4.1 Organoleptic evaluation of recipes

4.5 Phase V: Effect of cooking on micronutrient (Beta carotene and Iron) content

4.6 Phase VI: Shelf life assessment of the most accepted recipe
 4.6.1 Organoleptic evaluation of developed products
 4.6.2 Microbial analysis of developed products
 4.6.3 Peroxide value of developed products
 4.6.4 Microbial analysis of dehydrated green leaf powder (Daucus carota and Brassica oleracea)

4.7 Phase VII: Calculate the cost and nutritive value of the most accepted recipe
 4.7.1 Cost analysis of the most accepted products
 4.7.2 Nutritive value of the most accepted products

5. DISCUSSIONS

6. CONCLUSIONS

BIBLIOGRAPHY

APPENDIX