LIST OF FIGURES

CHAPTER 2

Fig. 2.1. Flow chart for the proposed algorithm .. 16

Fig. 2.2. Block diagram for estimation of voltage flicker envelope and phase angle 18

Fig. 2.3. Plot of square of error (a)LMS (b) GD (c) GA (d) PSO (e) PSO & GD as learning algorithm ... 20

Fig. 2.4. (a) Plot of actual and estimated voltage flicker, (b) actual and estimated voltage flicker envelope (c) actual and estimated fundamental phase angle 21

Fig. 2.5. Block diagram for load frequency estimation .. 23

Fig. 2.6. Plot of square of error with (a) GD (b) GA (c) PSO (d) PSO & GD as learning algorithm ... 24

Fig. 2.7. Estimation of frequency from the real data ... 25

Fig. 2.8. Sudden change in load at 17.50 hours from 200MHW to 350MHW 26

Fig. 2.9. Estimation of frequency with random disturbance in load 27

Fig. 2.10. Device identification system .. 28

Fig. 2.11. Plot for square of error using (a) GD(b) GA (c) PSO (d) PSO & GD as learning algorithm ... 30

Fig. 2.12. Plot for estimated and actual devices .. 31

Fig. 2.13. Comparative analysis of conventional learning algorithms with the propose hybrid algorithm .. 32
CHAPTER 3

Fig. 3.1. Block diagram of Voltage source converter based DSTATCOM…………………38

Fig. 3.2. The system under study………………………………………………………………………39

Fig. 3.3. (a) Different Stages of Electric Arc Furnace Melting (b) Simulink Model of Arc Furnace………………………………………………………………………………………………40

Fig. 3.4. Actual Voltage waveform and Tracked Envelope with EAF as load……………… 41

Fig. 3.5. Model of DSTATCOM with the proposed control technique………………43

Fig. 3.6. Control Scheme for the proposed DSTATCOM……………………………………44

Fig. 3.7. Fault on Star Load…………………………………………………………………………45

Fig 3.8. Line Voltage and Current plots at PCC without the DSTATCOM………………46

Fig 3.9. Line voltage and Current plots at PCC with Conventional DSTATCOM with PI controllers…………………………………………………………………………………………46

Fig. 3.10 Line voltage and current at PCC with on line tracker and neural controller DSTATCOM……………………………………………………………………………………………47

Fig. 3.11 Reference currents waveforms with neural controller…………………………47

Fig. 3.12. Waveform for V_{DC}, voltage across DSTATCOM Capacitor…………………48

Fig. 3.13. Line voltage and current at PCC for Arc Furnace load without DSTATCOM………………………………………………………………………………………………………48

Fig. 3.14 Line voltage and Current at PCC with DSTATCOM and PI controller………49

Fig. 3.15. Line Voltage and Current with the proposed DSTATCOM ……………………49
CHAPTER 4

Fig. 4.1. Transfer Function Modeling of a two area thermal system..54

Fig 4.2. Boiler dynamics..55

Fig 4.3. A neuro fuzzy neuron..57

Fig. 4.4. The whole structure of power system control with on-line neuro-fuzzy control..59

Fig. 4.5. Plots showing initial and final membership functions..59

Fig. 4.6. Frequency deviation in Area-1...60

Fig. 4.7. Frequency deviation in Area-2...61

Fig. 4.8. Tie-line power deviation..61

Fig. 4.9. Comparative analysis of different controllers for ∆F₂..62

Fig. 4.10. Block diagram representation of ELC..64

Fig. 4.11. Control strategy of ELC...65

Fig. 4.12. Schematic diagram of control scheme for load frequency..66

Fig. 4.13. MATLAB based simulation model of a two area system with frequency controller...67

Fig. 4.14 Transient waveforms of a parallel operated system on a 3-phase, 3-wire system..68

CHAPTER 5

Fig. 5.1. Block diagram of the proposed controller...75

Fig. 5.2. The proposed controller showing one complete iteration...76
Fig. 5.3. (a) Simulink model for the proposed controller sub-system (b) Simulink subsystem for FTF controller (c) Simulink subsystem for neural controller
..77

Fig. 5.4. Frequency deviation in (a) area 1(Hz) (b) area2(Hz) (c) Deviation in tie line power (PU MW)
..79

Fig. 5.5. Comparative analysis of different controllers for ΔF_1..80

CHAPTER 6

Fig. 6.1 Automatic generation control with LFC and AVR loops.................................84

Fig. 6.2. Power system under study ...85

Fig. 6.3. Current and voltage phasors ..85

Fig. 6.4. Combined model for LFC and AVR loops with proposed controller..............89

Fig. 6.5. (a) Plot for frequency deviation (b) dynamic response for turbine output power
c(d) dynamic response for electrical power deviation (d) terminal voltage deviation
..91

CHAPTER 7

Fig. 7.1. Block diagram representation of the system...94

Fig. 7.2. Control Scheme for DSTATCOM ...95

Fig. 7.3. Neural network plant modeling ...99

Fig. 7.4. Controller optimization using PSO...100

Fig. 7.5. Controller optimization using GA...101

Fig. 7.6. Simulink based block diagram of DSTATCOM and ELC system.................102

Fig. 7.7. Simulink based subsystem model of DSTATCOM controller....................103
Fig. 7.8. Performance without STATCOM and ELC controller ..104
Fig. 7.9. Performance of PSO-PI controller for power factor correction, load balancing and load frequency control ...105
Fig. 7.10. Performance of PSO-PI controller for voltage regulation, load balancing and load frequency control ..106
Fig. 7.11. Performance of GA-PI controller for power factor correction, load balancing and load frequency control ...107
Fig. 7.12. Performance of GA-PI controller for voltage regulation, load balancing and load frequency control ...108
Fig. 7.13. Performance of PSO-FOPI controller for power factor correction, load balancing and load frequency control ...109
Fig. 7.14. Performance of PSO-FOPI controller for voltage regulation, load balancing and load frequency control ...110
Fig. 7.15. Performance of GA-FOPI controller for power factor correction, load balancing and load frequency control ...111
Fig. 7.16. Performance of GA-FOPI controller for voltage regulation, load balancing and load frequency control ...112
Fig. 7.17. Performance of PSO-ANN controller for power factor correction, load balancing and load frequency control ...113
Fig. 7.18. Performance of PSO-ANN controller for voltage regulation, load balancing and load frequency control ...114
Fig. 7.19. Performance of GA-ANN controller for power factor correction, load balancing and load frequency control ...115
Fig. 7.20. Performance of GA-ANN controller for voltage regulation, load balancing and load frequency control...116

Fig. 7.21. Performance of GA-ANN controller for power factor correction, load balancing, harmonic elimination and load frequency control for non – linear load..118

Fig. 7.22. Waveform and harmonic analysis for non – linear load...........................118

Fig. 7.23. Performance of GA-ANN controller for voltage regulation, load balancing, harmonic elimination and load frequency control for non – linear load..119

Fig. 7.24. Waveform and harmonic analysis for non – linear load...........................119

CHAPTER 8
Fig 8.1. Dynamic Voltage Restorer (DVR)..123

Fig 8.2. Phasor diagram of compensating voltage sag..124

Fig. 8.3. Block diagram of control scheme..125

Fig. 8.4. Flow chart of feedback control technique for DVR based on dqo transformation...126

Fig 8.5. Simulink model of DVR with PI controller in feed forward loop + GMM-GFM controller in feedback loop...131

Fig 8.6. PCC Voltage (volts)and Load Voltage(volts) Vs time(seconds) for DVR with P controller in feed forward loop + GFM-GMM Fuzzy controller in feedback loop...133

Fig 8.7. T-S Controller output, d- axis component of load voltage and injected voltage Vs time (seconds) by DVR...133
Fig. 8.8. ML Controller output, d- axis component of load voltage and injected voltage Vs time(seconds) by DVR ...134

Fig. 8.9. GFM Controller output, d- axis component of load voltage and injected voltage Vs time(seconds) by DVR ...134

Fig 8.10. PCC Voltage and Load Voltage Vs time for DVR with PI controller in feed forward loop + GFM-GMM Fuzzy controller in feedback loop for 60% sag ...135

Fig 8.11. PCC Voltage and Load Voltage Vs time for DVR with PI controller in feed forward loop + GFM-GMM Fuzzy controller in feedback loop for 25% swell ...136

Fig 8.12. PCC Voltage with harmonics Vs time ...137

Fig 8.13. Load Voltage Vs time ...137

Fig 8.14. Load Current Vs time ...137
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Literature Survey for Harmonics</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Comparison of Square of Error in Flicker Problem</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of Square of Error in Load Frequency Problem</td>
<td>26</td>
</tr>
<tr>
<td>2.3</td>
<td>Coding for Devices</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparison of Square of Error in Harmonic Signature Verification</td>
<td>32</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparative Study of Dynamic Response</td>
<td>63</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparative Study of Dynamic Response</td>
<td>80</td>
</tr>
<tr>
<td>6.1</td>
<td>Values of K_1-K_6</td>
<td>90</td>
</tr>
<tr>
<td>6.2</td>
<td>Parameters for LFC and AVR model</td>
<td>90</td>
</tr>
<tr>
<td>7.1</td>
<td>Maximum Percentage Error in V_{DC}</td>
<td>117</td>
</tr>
<tr>
<td>8.1</td>
<td>Parameters of GMM after Training</td>
<td>130</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

\(\psi(\bullet) \): non linear activation function;

\(w \) and \(u \): weights and the input vectors for neural network

\(B \): threshold value

\(f_{pm} \): output of neural network.

\(i_d^*, i_q^* \): reference currents are in dq frame

\(i_a, i_b, i_c \): sensed supply current

\(i_a^*, i_b^*, i_c^* \): reference supply current

\(V_{dc} \): voltage across the electrolytic capacitor in DSTATCOM

\(i \): number of areas in power system under study

\(X_i \): input to the controller of \(i^{th} \) area

\(\Delta F \): change in frequency

\(B \): frequency bias constant

\(\Delta P_{tie} \): change in tie line power

\(\mu (k,i) \): normalized membership function of the fuzzy set,

\(a_{pi} \): width of membership function,

\(c_{pi} \): center of membership function,

\(l_{pi} \): give the shape of membership function,

\(P_{gen} \): generated power

\(P_{load} \): power consumed by the consumer load

\(w_{f1} \) and \(w_{f2} \): FTF weights

\(R \): Droop characteristic

\(T_t \): Turbine time constant

\(T_G \): Governor Time constant

\(K_a \): Amplifier gain

\(T_a \): Amplifier time constant

\(K_r \): Sensor gain

\(T_r \): Sensor time constant

\(T_3 \): Generator-field transient time constant
\(\Delta f \): Deviation in load frequency
\(\Delta V_t \): Deviation of terminal voltage
\(\Delta P_e \): Deviation of internal electrical power
\(\Delta V_f \): Deviation of field winding voltage
\(\Delta \delta \): Deviation of torque angle.