Table of Contents

Acknowledgements iv
ABSTRACT v
Table of Contents vi

List of Figures xiv
List of Tables xviii

List of Abbreviations xx

I. INTRODUCTION & BACKGROUND 1-5
Diabetes 1
Diabetic Nephropathy 2

II. Need for the study 4

III. Review of Literature 6
A. Clinical Features of Diabetic Nephropathy 6-7
 a) Albuminuria 6
 b) Altered Glomerular Filtration Rate 6
 c) Hypertension 7
B. Morphological Features of Diabetic Nephropathy 7-9
 a) Glomerular Basement Membrane Thickening 8
 b) Mesangial Expansion 8
 c) Microaneurysm (glomerular capillary dilatation) 8
 d) Inflammation 8
 e) Tubulointerstitial Fibrosis 9
 f) Hyperplastic Arteriolosclerosis 9
C. Pathophysiology of Diabetic Nephropathy 9-15
 a) Hyperglycemia 10
 b) Angiotensin II (Ang-II) 11
 c) Hemodynamic Factors 11
 d) Transforming Growth Factor-β (TGF-β) 12
 e) Albuminuria 12
 f) Inflammation 12
 g) Vascular endothelial Growth Factor 13
IV. Experiment design

PART I

Effect of Aliskiren and Olmesartan monotherapy and combination in Diabetic Nephropathy in STZ induced NIDDM in rats

1. Introduction
 Drug review: Aliskiren & Olmesartan

2. Aims & Objectives of the study

3. Material and Methods
 3.0 Materials
 3.1 Animals
 3.2 Study Design
 3.3 Body weight determination
 3.4 Blood Glucose Estimation
 3.5 Homeostatic model assessment for insulin resistance
 3.6 Collection of blood sample
 3.7 GLUT-2 expressions in liver and GLUT-4 expressions in soleus muscle
 3.8 Measurement of hemodynamic parameters in diabetic rats
 3.9 Measurement of renal function and biochemical parameters
 3.9.1 Estimation of Plasma Insulin
 3.9.2 Estimation of Total proteins
 3.9.3 Serum Albumin

h) Adiponectin
i) Erythropoietin
j) Glomerular Filtration Rate
k) Other Vascular Problems
h) Podocytopathy
D. Treatment of Diabetic Nephropathy
 a) Intensive Glycemic Control
 b) Renin-angiotensin system (RAS) Blockade
 c) Other Anti-hypertensives
 d) Diet Modification: Low Sodium, Low Protein
3.10 Estimation of Glomerular Filtration rate
 3.10.1 Serum Creatinine 30
 3.10.2 Serum Cystatin c and Beta 2 microglobulin 30

3.11 Estimation of Inflammation and Growth factors
 3.11.1 Serum Nitrate/ nitrite assay 30
 3.11.2 Estimation of Tumor Necrosis factor-α 30
 3.11.3 VEGF and TGF-beta 30

3.12 Estimation of Adiponectin and Erythropoietin

3.13 Histopathology
 3.13.1 Glomerulosclerotic index 31
 3.13.2 Quantitation of matrix deposition 31
 3.13.3 Immunohistochemistry for Nephrin 31

3.14 DNA Fragmentation Assay 32

3.15 Statistical Analysis 32

4.0 Results

4.1 Effect of Aliskiren and Olmesartan administration on body weight and blood glucose in monotherapy and in combination.

4.2 Effect of Aliskiren, Olmesartan and Combination on HOMA-Index, and β-cell function in diabetic rats

4.3 Effect of Aliskiren and Olmesartan monotherapy and combination treatment on liver GLUT-2 and muscle GLUT-4 expression

4.4 Biochemical Markers
 4.4.1 Plasma Insulin 36
 4.4.2 Total Proteins and Albumin in Plasma 37

4.5 Hemodynamic parameters 38

4.6 Glomerular Proteins and Glomerular Filtration rate (GFR)
 4.6.1 Serum Creatinine 40
 4.6.2 Serum Cystatin-C 40
 4.6.3 Beta-2 microglobulin 40
 4.6.4 Receiver operating characteristic (ROC) curve to identify the diagnostic efficacy of serum creatinine, cystatin c and B2M

4.7 Effect of Aliskiren and Olmesartan monotherapy and combination on inflammation and Growth factors
Part II

Effect of Garcinol in the treatment of diabetic nephropathy in STZ induced NIDDM rats

1. Introduction
 Drug review: Garcinol

2. Aims and Objective of the Study

3. Materials and Methods
 3.1 Materials
 3.2 Measurement of α-glucosidase inhibitory activity in vitro
 3.3 Animals
 3.4 Eight week daily dosing study
 3.5 Homeostatic model assessment for insulin resistance
 3.6 GLUT-2 expressions in liver and GLUT-4 expressions in soleus muscle
PART III

Effect of hydroalcoholic extract of Tribulus terrestris in the treatment of diabetic nephropathy in STZ induced NIDDM rats

1.0 Introduction

Drug review: Tribulus terrestris

2.0 Aims and Objectives of the study

3.0 Material and Methods

3.1 Materials

3.2 Animals

3.3 Eight week chronic daily dosing study

3.4 Homeostatic model assessment for insulin resistance

3.5 GLUT-2 expressions in liver and GLUT-4 expressions in soleus muscle

3.6 Measurement of renal function and biochemical parameters

3.7 Histopathology
3.7.1. Glomerulosclerotic index 91
3.7.2 Quantitation of matrix deposition 92
3.7.3 Immunohistochemistry for Nephrin 92
3.8 DNA Fragmentation 92
3.9 Saponin analyses
 3.9.1 Qualitative detection using TLC 93
 3.9.2 Quantitative detection of Saponins 93
3.10 Statistical Analysis 94

4.0 Results

4.1 Effect of T. terrestris extract on body weight and blood glucose 95
4.2 Effect of T. terrestris on HOMA-Index, and β-cell function in diabetic rats 97
4.3 Effect of T. terrestris extract on the expression of GLUT2 in liver and GLUT-4 in soleus muscle

4.4 Biochemical Markers
 4.4.1 Plasma Insulin 98
 4.4.2 Total Plasma Proteins and Albumin 98

4.5 Glomerular Proteins and Glomerular Filtration rate
 4.5.1 Serum Creatinine 100
 4.5.2. Serum Cystatin-C 100
 4.5.3 Beta-2 microglobulin 100

4.6 Effect of Garcinol on Inflammation and Growth Factors
 4.6.1. TNF-alpha 101
 4.6.2 Nitric Oxide 101
 4.6.3 Transforming Growth Factor-β1 (TGF-β1) 102
 4.6.4 Vascular Endothelial Growth Factor (VEGF) 102

4.7 Molecular markers
 4.7.1 Adiponectin 103
 4.7.2 Erythropoietin 103

4.8 Histopathology
 4.8.1 Glomerulosclerotic index (GSI) 105
 4.8.2 Quantitation of matrix deposition 105
 4.8.3 Nephrin Expression 105

4.9 Apoptosis 105
PART IV

Effect of Polyherbal formulation Vasant Kusumakar ras in the treatment of Diabetic nephropathy in STZ induced NIDDM rats

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction</td>
<td>118</td>
</tr>
<tr>
<td>Drug review: Vasant Kusumakar Ras</td>
<td></td>
</tr>
<tr>
<td>2.0 Aims and Objectives of the study</td>
<td>121</td>
</tr>
<tr>
<td>3.0 Material and Methods</td>
<td></td>
</tr>
<tr>
<td>3.1 Materials</td>
<td>122</td>
</tr>
<tr>
<td>3.2 Animals</td>
<td>122</td>
</tr>
<tr>
<td>3.3 Eight week chronic daily dosing study</td>
<td>122</td>
</tr>
<tr>
<td>3.4 Homeostatic model assessment for insulin resistance</td>
<td>122</td>
</tr>
<tr>
<td>3.5 GLUT- 2 expressions in liver and GLUT- 4 expressions in soleus muscle</td>
<td>123</td>
</tr>
<tr>
<td>3.6 Measurement of renal function and biochemical parameters</td>
<td>123</td>
</tr>
<tr>
<td>3.7 Histopathology</td>
<td>123</td>
</tr>
<tr>
<td>3.7.1 Glomerulosclerotic index</td>
<td>124</td>
</tr>
<tr>
<td>3.7.2 Quantitation of matrix deposition</td>
<td>124</td>
</tr>
<tr>
<td>3.7.3 Immunohistochemistry for Nephrin</td>
<td>124</td>
</tr>
<tr>
<td>3.7.4 Immunohistochemistry for Heavy metals</td>
<td>124</td>
</tr>
<tr>
<td>3.8 DNA Fragmentation Assay</td>
<td>124</td>
</tr>
<tr>
<td>3.9 Tissue processing and autometallographic staining</td>
<td>125</td>
</tr>
<tr>
<td>3.10 Statistical Analysis</td>
<td>125</td>
</tr>
<tr>
<td>4.0 Results</td>
<td></td>
</tr>
<tr>
<td>4.1 Effect of VKR on body weight and blood glucose</td>
<td>126</td>
</tr>
<tr>
<td>4.2 Effect of VKR on HOMA-Index, and β-cell function in diabetic rats</td>
<td>128</td>
</tr>
<tr>
<td>4.3 Effect of VKR on liver GLUT2 and muscle GLUT-4 expression</td>
<td>129</td>
</tr>
</tbody>
</table>
4.4 Biochemical Markers
 4.4.1 Plasma Insulin
 4.4.2 Total Plasma Proteins and Albumin
4.5 Glomerular Proteins and Glomerular Filtration rate
 4.5.1 Serum Creatinine
 4.5.2 Serum Cystatin-C
 4.5.3 Beta-2 microglobulin
4.6 Effect of VKR on Inflammation and Growth Factors
 4.6.1 Tumor necrosis factor (TNF-alpha)
 4.6.2 Nitric Oxide (NO)
 4.6.3 Transforming Growth Factor-β1 (TGF-β1)
 4.6.4 Vascular Endothelial Growth Factor (VEGF)
4.7 Molecular markers
 4.7.1 Adiponectin
 4.7.2 Erythropoietin
4.8 Histopathology
 4.8.1 Glomerulosclerotic index (GSI)
 4.8.2 Quantitation of matrix deposition
 4.8.3 Nephrin Expression
4.9 Apoptosis
4.10 Detection of Heavy metals
4.11 Autometallography for mercury detection
5.0 Discussion
6.0 Conclusion
V. References
VI. Annexures
VII. List of Publications