DECLARATION

I declare that the thesis entitled SCHRÖDINGER KITTEN STATES OF A QUBIT-OSCILLATOR SYSTEM: GENERATION AND QUANTUM PROPERTIES IN THE PHASE SPACE submitted by me for the degree of Doctor of Philosophy (Ph.D.) is the record of work carried out by me during the period from November 2011 to June 2018 under the guidance of Dr. Ranabir Chakrabarti, Professor (retd.), Department of Theoretical Physics, University of Madras and has not formed the basis for the award of any Degree, Diploma, Associateship, Fellowship, Titles in this University or any other University or other similar Institution of Higher Learning.

Place:
Date:
Signature of the Candidate: B. Virgin Jenisha
Acknowledgements

Dear GOD, I take this as an opportunity to thank you for everything you have done for me so far. Thank you for guiding me towards success and for giving the strength to move on from every difficulty.

First and foremost, I would like to express my sincere gratitude towards my research supervisor Professor Ranabir Chakrabarti for his support, encouragement, and patience during my Ph.D. period. He is the one who introduced me to the research world and motivated me to stay on the right track in spite of the difficulties. It was a honor to work with such an eminent person who shaped me not just with his vast knowledge but also with his strong value system.

I would also like to thank Dr. Rita John, Head, Dept. of Theoretical Physics, University of Madras and the members of teaching staff Dr. A. S. Vytheeswaran, Dr. R. Radhakrishnan, Dr. G. Gnanasangeetha and Dr. M. Rajalakshmi for their help and support. I also offer my gratitude Professor Late P. R. Subramanian, former Head, Department of Nuclear Physics.

I wish to express my special thanks to my doctoral committee member Dr. G. Baskaran, Institute of Mathematical Sciences, Chennai for his valuable suggestions throughout my research work.

I am always indebted to Ms. G. Sreekumari, Assistant Professor, Loyola college who taught the basics of quantum mechanics and statistical mechanics which inspired me to take up the research in this field. I am always grateful to her for being with me and understanding me in the hour of needs till time.

My special thanks to my friend and colleague Mr. V. Yogesh, Research scholar, Department of Theoretical Physics for teaching me many computational techniques that are used in this thesis. Though the academic discussion between us had lots of conflicts, they always ended up enlightening us with new ideas. I would also like to thank Mr. M. Balamurugan, Research scholar, Department of Theoretical Physics with whom a part of the work was carried out. He is a good friend and a well wisher who showed
There are many people I met during this period who helped me making my stay in this department a pleasant and meaningful one. In particular, I wish to acknowledge the help and support I received from my fellow research scholars Mr. K. Ekambaram, Ms. R. Janaki, Ms. S. Padmavathi, Ms. Namitha Anna Koshi, Ms. R. Anubama, Ms. B. Benita Merlin, Ms. Rosy and Mr. J. Jayachandiran. This list is incomplete without my friends Dr. Sukanya, Ms. Padma Priya, Ms. Vimarita, Ms. Leuba, Ms. Amana and Ms. Salma Mohammed. The support I have received from them during this period can not be described in words.

I also appreciate the help received from the technical staff Mr. T. Samuel and non teaching staff members from my department .

There are many others whom I met in the last one year who helped me in the tough and hectic phase I was going through. My special thanks are due to my GCE-S, Trichy colleagues and my hostel mates for their support and encouragement.

I use this opportunity to thank my family members. There are no enough words to express my gratitude towards my parents. There were days when I took out all frustration and the stress of my work on them. Regardless, they were there for me always. I am blessed to have them as my parents. Thank you mom and dad for your everlasting love, care and support. I would also like to thank my brother. In spite of his busy schedule, he was always there for me whenever I am in need of a help.

I acknowledge the University Grants Commission (UGC), Government of India for the MANF Fellowship.

I also wish to express my deepest gratitude to all people who played a role in my journey directly or indirectly.

B. Virgin Jenisha
Contents

List of figures viii

List of tables xii

1 Introduction 1
 1.1 Objective of the thesis: ... 3
 1.2 Thesis organization: .. 4

2 Basics and theoretical framework 6
 2.1 Superconducting qubits ... 6
 2.2 Strongly coupled qubit-oscillator system 7
 2.3 The Hamiltonian: solution via adiabatic approximation 9
 2.4 Phase space picture of quantum states 11
 2.4.1 Quasi probability distributions 11
 2.5 Hilbert-Schmidt distance 13

3 Evolution of the quasi-Bell states in a strongly coupled qubit-oscillator system 15
 3.1 Quasi-Bell states ... 15
 3.2 Evolution of quasi-Bell states 16
 3.2.1 The reduced density matrices 17
 3.2.2 The von Neumann entropy 18
 3.3 Closed form evaluation of the qubit density matrix 19
 3.4 The Q-function of the oscillator density matrix 24
List of Figures

3.1 The evaluation of the (a) real and (b) imaginary parts of the off-diagonal component $\xi^{(+)}$ of the density matrix for the values $\lambda = 0.15\omega, \Delta = 0.15\omega, \epsilon = 0.01\omega$ and $\alpha = 2$ using the series (3.6) (red solid) that provides exact result within the adiabatic scheme, and the theta function (3.21) (green dashed) based result. In this instance and hereafter evolution is studied w.r.t. the scaled time ωt. 23

3.2 Evaluation of the entropy for $\lambda = 0.15\omega, \Delta = 0.15\omega, \epsilon = 0.01\omega$ and $\alpha = 2$ using the series (3.5, 3.6) (red solid), and theta function (3.20, 3.21) (green dashed). 24

3.3 The $Q^{(+)}(\beta, \beta^*)$ function using (3.25) for $\Delta = 0.15\omega, \epsilon = 0.01\omega$ and $\alpha = 2$ at various values of scaled time (a) 0, (b) 155 and (c) 300 in the strong coupling domain: $\lambda = 0.15\omega$. 26

3.4 The evaluation of the second moment of the quadrature variable $\langle X_{\pi/2}^{(+)} \rangle$ for the values $\lambda = 0.16\omega, \Delta = 0.15\omega, \epsilon = 0.01\omega$ and $\alpha = 1$ using the series (3.30) (red solid), and theta function (3.35) (green dashed). 30

4.1 The long time evolution of the Wehrl entropy for $\Delta = 0.15\omega, \epsilon = 0.03\omega$ and $\alpha = 3$ at various λ: (a)0.05ω, (b)0.07ω (c)0.1ω, (d)0.12ω, (e)0.9ω and (f)1.3ω. 33

4.2 The initial rise of the Wehrl entropy obtained for $\Delta = 0.15\omega, \epsilon = 0.03\omega$ and $\alpha = 3$ at various λ: 0.6ω (red), 0.8ω (green) and 1.0ω (blue). 34
4.3 The $Q^{(+)}(\beta, \beta^*)$ function using (5.24) for $\Delta = 0.15\omega, \epsilon = 0.03\omega$ and $\alpha = 3$ at various values of scaled time: (a) 0, (b) $T_{\text{long}}/4$, (c) $T_{\text{long}}/3$, (d) $T_{\text{long}}/2$, (e) $T_{\text{long}} (= 406081.5)$ for the chosen coupling strength $\lambda = 0.05\omega$. 37

4.4 The evolution of Wehrl entropy is given around (a) $T_{\text{long}}/2$ and (d) T_{long} for the coupling strength $\lambda = 0.05\omega$, and $\Delta = 0.15\omega, \epsilon = 0.03\omega$ and $\alpha = 3$. Corresponding to the local maxima and minima of the Wehrl entropy the Q-function is given at following scaled times: (b) $T_{\text{long}}/2 + T_{\text{split}}(T_{\text{long}}/2)$, (c) $T_{\text{long}}/2 + 2T_{\text{split}}(T_{\text{long}}/2)$, (e) $T_{\text{long}} + T_{\text{split}}(T_{\text{long}})$, (f) $T_{\text{long}} + 2T_{\text{split}}(T_{\text{long}})$, where $T_{\text{long}} = 406081.5$, $T_{\text{split}}(T_{\text{long}}/2) = 567.5$, $T_{\text{split}}(T_{\text{long}}) = 1135$. 38

4.5 The long time evolution of the complexity $\mathcal{W}_2(Q)$ obtained for $\Delta = 0.15\omega, \epsilon = 0.03\omega$ and $\alpha = 3$ at the following values of λ: (a) 0.05ω, (b) 0.1ω and (c) 0.9ω. 40

4.6 (a) The time evolution of the quadrature variance $V_{\theta=0}^{(+)}$, and the Q function at two different scaled times: (b) 0, and (c) 408.5 for values $\alpha = 0.05$, $\lambda = 0.3\omega, \Delta = 0.15\omega$ and $\epsilon = 0.03\omega$. The squeezing at scaled time $\omega t = 408.5$ is evident from the corresponding variance $V_{\theta=0}^{(+)} = 0.3777$. The contour plot (c) also turns elliptic at the said time. 43

4.7 The polar plot (w.r.t θ) of the quadrature variance $V_{\theta}^{(+)}$ for values $\alpha = 0.05$, $\lambda = 0.3\omega, \Delta = 0.15\omega$ and $\epsilon = 0.03\omega$ at time $\omega t = 0$ (red), and $\omega t = 408.5$ (purple) when the least value of variance 0.3741 occurs at an angle $\theta = 5.71^\circ$. 43

4.8 The time evolution of the Mandel parameter for values $\alpha = 0.05$, $\lambda = 0.6\omega, \Delta = 0.15\omega$ and $\epsilon = 0.03\omega$. 45
5.1 (a) The Q function for the values $\alpha = 2, r = 0.7, \vartheta = 0, \Delta = 0.15 \omega, \lambda = 0.04 \omega, \epsilon = 1.3 \omega, c = 1$ at scaled time $\omega t = 30414$ using the (red solid) series evaluation (5.24), and the corresponding value (blue dashed) based on the linear approximation (5.26). The polar plot of the quadrature variance V_φ (Sec. 5.2.5) is given in (b) for the said parameters. (c) The angular Husimi density $Q(\vartheta)$ on the phase space is plotted for the above set of parameters.

5.2 The long time quasi periodic behavior with the time period $T_{\text{long}} \sim O((x^2 \Delta)^{-1})$ is observed for (a) the von Neumann entropy S, and (b) the Wehrl entropy S_Q for the parametric values $\alpha = 3, r = 0.7, \vartheta = 0, \Delta = 0.15 \omega, \lambda = 0.05 \omega, \epsilon = 0, c = i$. The semiclassical Wehrl entropy S_Q faithfully reproduces periodicity and the local minima structure of the quantum entropy S, even though the quantum fluctuations due to a multiplicity of modes originating due to the interaction are more prominent for the latter. The above parameters produce the time period $\omega T_{\text{long}} = 1730000$.

x
5.3 The Wigner W-distribution (columns 1, 2) and the polar plot for $P(\theta)$ (columns 2, 4) at times, equivalent up to a period, $T_{\text{long}}/2$ (row 1), $T_{\text{long}}/3$ (row 2), and $T_{\text{long}}/4$ (row 3) respectively. The parameters are chosen as $\alpha = 3, r = 0.7, \vartheta = 0, \Delta = 0.15 \omega, \lambda = 0.05 \omega, \epsilon = 0, c = i$. The short time fluctuations of frequencies $O(x \Delta)$ superposed on the quadratic T_{long} modes cause the entropies (S, S_Q) to achieve a local minimum and a neighboring maximum at times $\omega t = 2205$ and $\omega t = 3371$ (for $T_{\text{long}}/2$), $\omega t = 287055$ and $\omega t = 286370$ (for $T_{\text{long}}/3$), $\omega t = 435013.2$ and $\omega t = 434450$ (for $T_{\text{long}}/4$), respectively. At the minima of the short time fluctuations at T_{long}/p give rise to p kitten states that bifurcate into $2p$ kitten states at the adjacent maxima arrived at the short time scale T_{short}. The green dotted lines in column 3 (4) depict the phase space angular density $P(\theta)$ of the reference state (5.46) ((5.56)) with the choice of parameters given in Table 5.1 (5.2).

5.4 The short time $O(x \Delta)$ fluctuations of the Wehrl entropy $S_Q(\text{red})$, von Neumann entropy $S(\text{green})$, negativity $\delta_W(\text{magenta})$, and the Hilbert-Schmidt distance $d_{\text{HS}}(\rho_O(t), \rho_O(t_{\text{ref}}))(\text{blue})$ are plotted at times (equivalent up to a period T_{long}) $T_{\text{long}}/2$ (column 1), $T_{\text{long}}/3$ (column 2), and $T_{\text{long}}/4$ (column 3) respectively. The chosen parametric values read: $\alpha = 3, r = 0.7, \vartheta = 0, \Delta = 0.15 \omega, \lambda = 0.05 \omega, \epsilon = 0, c = i$. Towards calibrating the Hilbert-Schmidt distance $d_{\text{HS}}(\rho_O(t), \rho_O(t_{\text{ref}}))$ between the quantum states, we, in Figs. (a, b, c), have chosen the reference times ωt_{ref} as 2205, 287055, 435013.2, respectively.
List of Tables

4.1 The long timespan quasi-periodicity of Wehrl entropy of the system at various values of coupling strength. .. 34

5.1 Reconstruction of oscillator states in the neighborhood of pure states . 70
5.2 Non-Gaussian characteristics of the high entropy states 72