CONTENTS

Chapter I

1. INTRODUCTION

1.1. THE ATMOSPHERE, COMPOSITION AND CLASSIFICATION	1
1.2. THE TROPOSPHERE AND WEATHER	4
1.2.1 Circulation of Tropospheric air and Monsoon	6
1.2.2. Weather Elements–Variations	8
1.3. ATMOSPHERIC ELECTRICITY- HISTORY AND DEVELOPMENT	9
1.4. IONS, SOURCES AND IONISATION	11
1.4.1. Ionisation by Solar Radiation	12
1.4.2. Ionisation by Galactic Cosmic radiation	13
1.4.3. Ionisation by Surface Radioactivity	13
1.4.4. Other Sources of Ionisation	15
1.4.5. Charge and Mobility of Ions	16
1.5. THE ATMOSPHERIC ELECTRIC FIELD	17
1.5.1. The Global Electric Circuit (GEC)	19
1.5.2. GEC Characteristics under Steady State Condition	20
1.6. AEROSOLS	24
1.7. ELECTRICAL CONDUCTIVITY OF AIR	26
1.8. PREVIOUS STUDIES	28
1.9. PRESENT STUDY	35
Chapter II

2. MEASUREMENT TECHNIQUES AND INSTRUMENTATION

2.1. ION SOURCE AND SINK 37

2.2. WEATHER PARAMETERS 39

2.3. POLAR CONDUCTIVITY MEASUREMENT 41
 2.3.1. GC Technology - Basic Theory 43
 2.3.1.1. Organisation of Electrodes in a GC 46
 2.3.1.2. Theory 47

2.4. SOURCES OF ERRORS 52

2.5. GC ASSEMBLY - DESIGN AND FABRICATION 55
 2.5.1. The Electronics 60
 2.5.1.1. The Current to Voltage Converter or the E. M. Amplifier 60
 2.5.1.2 Voltage Amplifier System 65
 2.5.1.3. Output Level Control 68
 2.5.1.4. Driving Electrode Voltage (DEV) Switching 71
 2.5.1.5. Transient Suppression 74
 2.5.2. System for Negative Polar Conductivity Measurement 77
 2.5.3. Power Supply and DEVs 77

2.6. INTEGRATION OF THE TWO SYSTEMS 81
 2.6.1 Synchronisation in Absence of a Common Clock 83
2.7. Calculation of Conductivity

2.8. Selection of Operating Point of the GC

Chapter III

3. Measurements of Conductivity, Pressure and Weather Elements

3.1. The Unprocessed GC Data and Observation

3.2. Processing of GC Data

3.3. Conductivity, Pressure and Weather Parameters
 3.3.1. Conductivity and Pressure on a day in June
 3.3.2. Conductivity and Weather Parameters on a day in June
 3.3.3. Polar Conductivity of air and Atmospheric Pressure during Consecutive Days in the Month of April.
 3.3.4. Weather and Conductivity Data During a day in April

3.4. Conductivity, Pressure and Temperature Data During a Day in May

3.5. Polar Conductivity During Different Months

3.6. Conductivity During Different Periods

3.7. Measurement of Sources and Sinks of Ions
 3.7.1. Ion Source
 3.7.2 Sink of Ions
Chapter IV

4. DISCUSSION

4.1. CONDUCTIVITY AND PRESSURE

4.1.1 Establishment of Conductivity- Pressure Inverse Nature

4.1.2. Conductivity- Pressure Inverse Nature and Seasons

4.1.3. Conductivity-Pressure Variation and Their Relative Magnitudes

4.2. CONDUCTIVITY AND WEATHER ELEMENTS

4.3. CONDUCTIVITY - SOURCE AND SINK FOR IONS

4.4 CONDUCTIVITY AND PRESSURE- CAUSE EFFECT RELATIONSHIP

4.5. REFERENCE ESTIMATION –SIGNIFICANCE

4.6. HIGHLIGHTS OF RESULTS AND CONCLUSION

4.7. CONCLUSION

4.8. SUGGESTIONS FOR FURTHER STUDIES

4.8.1. Influence of Latitude on Pressure and Conductivity Variations

4.8.2. Negative Values of Collector Current during Reference Estimation

REFERENCE

PUBLICATIONS