Algorithm 3.1: Evaluation and Computation phases of DSCMS Model

End user (EUi) request Documents (SDn) from SCM (Pi) {
End users Query (Qi) is validated, Begin DSCMS,
Phase 1: SCM & Semantic Crawler
for user (i) {
 Key in Query Qn
 Check if Qn is new or old
 If (Qn == new) {
 Search for links in repository,
 If (Qn !found)
 Trigger semantic crawler ()
 If threshold >0.8
 Filter URLs based on meta-keywords MKi
 Read structure of web document
 If structure == Script [predefined structure]
 Store links in repository
 Update () repository periodically
 }
 Else if (Qn==old) {
 Create VDn with existing SDn
 Execute NER based concept_matching ()
 Annotate meaningful highlighted words
 Link the SDn with the top ten highlights
 }
 Select SCM(Pi) {
 If SCM(Pi==structured)
 Implement ETL {
 Extract harvested URLs
 Preprocess the content
 Store it in RDBMS repository
 Load into DFS
 }
 Else if SCM (Pi==semi-structured){
 Implement ETL {
 Extract harvested URLs
 Preprocess the content
 Store it in NOSQL repository
 Load into DFS
 }
 }
 Else if SCM (Pi==unstructured) {
Implement ETL {
 Extract harvested URLs
 Preprocess the content
 Store it in Distributed Data-model
 Load into DFS
}

Phase 2: RESCC on DFS
Domain expert User (j) {
 Initiate semantic k-means on DFS for high frequency keywords
 Identify topics using preliminary Tfidf method()
 Check domain specific keywords using concept_matching()
 Improve quality of cluster {
 Execute SHAC on DFS {
 Create 'n' number of clusters
 Match similarity score from NLP algorithms >0.5
 Iterate the process till minimum non-domain cluster
 }
 Fetch labels of cluster {
 Input labels to classifier1
 Perform sequence based classifier {
 Execute word_sense_disambiguation ()
 Execute SNBC()
 Identify sequence_words in VDn for threshold >0.8
 }
 Input labels to classifier2 {
 Generate intra and inter ontology
 Match similarity score >0.5
 Assign centrality (0-0.5) and authoritative scores (0.6-1.0)
 Rank the SDn matched with VDn using TOP-K
 }
 }
 }
}

Phase 3: Hadoop based Semantic Recommendation System (HBSRS)
Domain expert user(j) {
 If End user(EUi) mark the query and frequently visited links {
 Recommend the source links based on sequence words
 Personlize the SDn for user based on UFBC and CF
 Initiate ICTS based on marked links
 Preserve the timestamp Ts for the stored SD
 }
 Execute ABFS and DSBCD to track changes dynamically {
 Parse the content of URL
 Segregate to subject, predicate and object
 apply BFS to find the changes in literal and vertex
 }
 Execute DSBCD script in dynamic streamer {
 Check the timestamp ts of existing URL EURL
 }
if EURL change in ts==true
Check literal of object if (literal_change==true) {
Match the content with the NURL & EURL semantically
Generate RDF and Trigger alert periodically
Consolidate the alerts and email the end_user(i)
}

To accomplish the above algorithm in a successful manner there is a need for end to end semantic solution. A fourfold similarity measure is introduced in the DSCMS model which comprises of semantic annotation, concept matching, word sense disambiguation and sequence words based word sense mapping.