Acknowledgements

At the first and foremost, I bow my head humbly before the Goddess Chamunda and Saibaba for making me capable of completing my Ph.D. thesis; with their blessings only I have accomplished this difficult task. I am very grateful to the persons who were with me from the beginning; some who joined me at different stage during this expedition, whose kindness, love and blessings has brought me to this episode. I wish to thank each of them from the bottom of my heart.

I express deep sense of gratitude to my research guide Prof. Navin B. Patel (Head, Department of Chemistry, Veer Narmad South Gujarat University, Surat) who has helped me at each and every step of my Ph.D. research work with patience and enthusiasm. I am much indebted to him for his inspiring guidance, affection, and generosity throughout the tenure of my research work, without that the Thesis would not have appeared in the present form. He has not only guided me but also acted as a co-traveller throughout my research work.

I would like to thank Prof. K.C. Patel (Former Head, Department of Chemistry, Veer Narmad South Gujarat University, Surat) for providing me necessary facilities. I am also thankful to Dr. N. M. Patel (Principal, Shree Jayendrapuri Arts and Science College, Bharuch) and Dr. M. P. Peerzada (Head, Department of Chemistry, Shree Jayendrapuri Arts and Science College, Bharuch) for rendering every kind of help during the course of Ph.D. I am highly obliged to University Grants Commission, New Delhi for ‘Teacher Fellowship Award’ under the Faculty Improvement Program.

I would like to thank Dr. Bhupendra Mistry (Department of Food Science and Biotechnology, College of Life and Biotechnology, Dongguk University, Republic of Korea) for screening of antioxidant activity. I am also thankful to Dr. D. Rajani (Microcare Laboratory, Surat) for antimicrobial activity.

My Thesis bears the imprint of Dr. Faiyaz M. Shaikh, Dr. Imran H. Khan, Dr. Asif R. Shaikh, Dr. Amit. C. Purohit, Dr. Sabir S. Pathan, Dr. Snehal N. Patel and Dr. Vatsal M. Patel who provided invaluable support in the preliminary step of my research. I am also thankful to my research colleagues Deepti Ghaisas, Hetal Soni, Rahul Pramar, Jaydip Patel, Chetan Bulsara and Hiren Patel for providing friendly environment to research and for creating all memorable experience. I am thankful to
Shailes, Pranav, Geeta, Urja, Hiren, Amarey, Maryam, Nomesh, Parnas, Digant and many others for making this journey so wonderful.

I take this opportunity to thank all the non-teaching staff of my college and chemistry department and all peoples in Administration and Library of Veer Narmad South Gujarat University for providing laboratory facilities and their kind help during my research work.

I am unable to find words to express my feelings of acknowledging the tremendous debt that I owe to my respected father Mr. Bimalbhai A. Chauhan, loving mother Mrs. Lalitaben B. Chauhan, my father-in-law Mr. H.G. Parmar and mother-in-law Late Mrs. Geetaben H. Parmar for their blessings, untiring encouragement and inspiration that I have been able to steer through the stress and strains of this work.

I must acknowledge the great sacrifice and encouragement of my loving wife Mrs. Smita Chauhan during my entire research work. I am also thankful to my dearest son Nisarg and sweet daughter Vidhi for supporting me. I express my deep feelings to my brothers Pritesh chauhan, Yagnesh Chauhan and Chintan Chauhan, my uncles Mr. G. A. Chauhan and Mr. D. A. Chauhan and entire Chauhan family who inspired me every moment during my entire research work.

I would like to convey my pleasant heartily thankfulness to my dearest friends and well-wishers Dr. Ajay Mehta, Dr. J. J. Chauhan, Dr. M. T. Patel, Dr. R. B. Parmar, Dr. Kishoreeben Pathak, Dr. Neeta Patel, Dr. Ajay Agarwal, Dr. Kishor Pansuria, Dr. Ketan Parmar, Dr. Vinod Agravat, Mr. Balvindersingh Gathura, Mr. Virendra Patel, Prof. A. K. Mule, Baldev Solanki and Advocate Shivnandanbhai A. Patel for their time being help and moral support. I will never forget their all kind of help and best wishes who contributed towards the successful completion. Last but not least I would like to thank to all those who directly or indirectly assisted me in several ways that led to completion of this Ph.D. thesis work.

Nilesh B. Chauhan
List of Abbreviations

DMF : N,N-Dimethyl formamide
DMSO : Dimethylsulfoxide
MeOH : Methanol
DCM : Dichloromethane
EtOH : Ethanol
EtOAc : Ethylacetate
CAN : Cerric Ammonium Nitrate
TMS : Tetramethylsilane
DMSO-d_6 : Deutero dimethylsulfoxide
CDCl$_3$: Deutero chloroform
Comp : Compound
Equiv : Equivalent
mmol : mili mole
mL : mili Liter
M.F. : Molecular Formula
Calcd : Calculated
h : Hour
min : Minute
gm : Gram
m.p. : Melting point
TLC : Thin layer chromatography
str : Stretching
bend : Bending
s : Singlet
t : Triplet
d : Doublet
qu : Quartet
m : Multiplet
MIC : Minimal Inhibitory Concentration
MTCC : Microbial Type Culture Collection
E. coli : *Escherichia coli*
P. aeruginosa : *Pseudomonas aeruginosa*
S. aureus : *Staphylococcus aureus*
<table>
<thead>
<tr>
<th>Organism</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pyogenes</td>
<td>Streptococcus pyogenes</td>
</tr>
<tr>
<td>C. albicans</td>
<td>Candida albicans</td>
</tr>
<tr>
<td>A. niger</td>
<td>Aspergillus niger</td>
</tr>
<tr>
<td>A. clavatus</td>
<td>Aspergillus clavatus</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td>Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>DPPH</td>
<td>2, 2-Diethyl-1-picrylhydrazyl</td>
</tr>
<tr>
<td>ABTS</td>
<td>2, 2'-Azinobis (3-ethylbenzthiazoline-6-sulfonate)</td>
</tr>
<tr>
<td>THF</td>
<td>Tetra Hydro Furan</td>
</tr>
</tbody>
</table>
CONTENTS

Preface

Chapter I

1.1 Introduction and literature review of Coumarine 1
1.2 Materials and Methods 16
1.3 References 20

Chapter II

2.1 Introduction 26
2.2 Experimental 35
2.2.1 Series-I: 4-Methyl-6-nitro-2-oxo-2H-chromen-7yl-2-(4-(4-fluorophenyl)-6-(substitutedphenyl)-2H-1,3-thiazin-2-ylamino) acetates (1a-j) 35
2.2.2 Series-II: 4-Methyl-6-nitro-2-oxo-2H-chromen-7yl-2-(4-(4-fluorophenyl)-6-phenyl-2H-1,3-oxazin-2-ylamino) acetates (2a-j) 38
2.2.3 Series-III: 4-Methyl-6-nitro-2-oxo-2H-chromen-7yl-2-(4-(4-substituted phenyl)thiazol-2-ylamino) acetate (3a-j) 40
2.3 Characterization of synthesized compounds 41
2.4 Biological studies 64
2.5 Results and Discussion 67
2.6 References 73

Chapter III

3.1 Introduction 76
3.2 Experimental 85
3.2.1 Series-IV: 4-Methyl-6-nitro-2-oxo-2H-chromen-7yl-2-(3-cyano-6-(4-fluorophenyl)-4-(substituted phenyl)pyridin-2-yl-oxy) acetate (4a-j) 85
3.2.2 Series-V: 4-Methyl-6-nitro-2-oxo-2H-chromen-7-yl-2-(3-cyano-6-(2,4-dichlorophenyl)-4-(substituted phenyl)pyridin-2-ylamino)acetate (5a-j)

3.2.3 Series-VI: 4-Methyl-6-nitro-2-oxo-2H-chromen-7-yl-2-((5-cyano-6-oxo-4-substitutedphenyl-1,6-dihydropyrimidin-2-yl)thio)acetate (6a-j)

3.3 Characterization of synthesized compounds

3.4 Biological studies

3.5 Results and Discussion

3.6 References

Chapter IV

4.1 Introduction

4.2 Experimental

4.2.1 Series-VII: 4-Methyl-6-nitro-2-oxo-2H-chromen-7-yl-(5-cyano-3-methyl-4-phenyl-1,4-dihydropyrano[2,3-c]pyrazol-6-yl) glycinate (7a-j)

4.2.2 Series-VIII: 4-Methyl-6-nitro-2-oxo-2H-chromen-7-yl-(5-cyano-1-(2,4-dinitrophenyl)-3-methyl-4-phenyl-1,4-dihydropyrano[2,3-c]pyrazol-6-yl) glycinate (8a-j)

4.3 Characterization of synthesized compounds

4.4 Biological studies

4.5 Results and Discussion

4.6 References

Conference/Seminar/Workshop

Publications
Preface

Chemistry is necessarily an experimental science: its conclusions are drawn from data, and its principles supported by evidence from facts.

-Michael Faraday

The analogous-based-drug design is the most important perception in medicinal chemistry to design new drug contender. Amongst different heterocyclic systems; compounds containing hetero atoms such as oxygen and/or sulfur along with nitrogen i.e. coumarin, thiazine, oxazine, thiazole, pyridine, pyrimidine, pyrano-pyrazole etc. have impart preferential biological responses. On looking of the studies on biological activities it was decided to club the nitrocoumarin derivatives with above mentioned heterocycles to develop newer and more potential analogous. Many works showed that coumarin-containing analogs exhibited a wide range of pharmacological activities. The coumarin nucleus is present in numerous natural products is extremely important in the biological activities which have found applications in treatment of various pathogens. The increased incidence of opportunistic microbial infections, associated with superior resistance to the antimicrobial drugs currently in use has highlighted the need for new solutions. So development of potent, fast-acting, new classes of agents which are likely to be unaffected by existing resistance mechanisms is demanding need of current scenario. We focused to introduce chemical varieties in single structure which are pharmacologically interesting compounds.

Present thesis consists of Four Chapters;

Chapter I contains general introduction, scope of present work and literature review of coumarins, pyridine, pyrazole thiazine, oxazine, thiazole and pyrimidine with their analogs.

Chapter II contains experimental protocol, characterization, biological studies, results and discussion of three series of thiazines, oxazines and thiazoles clubbed coumarin;

Chapter III contains experimental protocol, characterization, biological studies, results and discussion of three series of pyridines and pyrimidine clubbed coumarin;

Chapter IV consist of experimental protocol, characterization, biological studies of the compounds two series of pyrano-pyrazoles clubbed coumarin;
Biological activity studies of final compounds (anti microbial, anti mycobacterial and anti oxidant) showed that compounds 1c, 1h and 2c showed very good activity against *E. coli* compared to chloramphenicol and ciprofloxacin whereas, 2c, 6c, 8f and 8g showed good activity against *P. aeruginosa* compared to chloramphenicol and ciprofloxacin. Compounds 1a, 1b, 1d, 2i, 3j, 4c, 5f, 7b and 8c displayed encouraging activity against *C. albicans* compared to griseofulvin. Compounds 1b, 1h, 3h, 4c, 4h and 7b showed comparable activities against *M. tuberculosis* *H*$_{37}$*Rv*. Compounds 1b and 1h bearing Cl and -C$_{3}$H$_{7}$ respectively were appeared to have high radical scavenging efficacies as 33.99 ± 0.301 and 35.35 ± 0.470 µg/mL ± SD of IC$_{50}$ values in DPPH and ABTS bioassay, respectively and can be comparable to that of control ascorbic acid while other compounds have moderate to poor antioxidant power against scavenging DPPH and ABTS From above, it was concluded that the compounds bearing halogens, -C$_{3}$H$_{7}$, -OCH$_{3}$, -CH$_{3}$ or -OH showed good activity compared to other compounds.

Better Things for Better Living Through Chemistry