Contents

Details of Registration II
Certificate III- V
Undertaking VI
Copyright VII
Acknowledgement VIII-IX
List of Tables X
List of Figures XI
List of Abbreviations XII
Introduction 1-10
Aim and objectives 11
Materials and Methods 12-21
Results 22-24
Discussion 25-30
Conclusion 31
Summary 32-33
References 34-52
List of publications and presentations 53
List of Tables

Table I Treatment protocol
Table II Treatment protocol for G₂ assay
Table III Chromosomal aberrations after addition of aqueous extract from *Alstonia scholaris* bark, stem and leaf alone as well as in combinations with Bleomycin
Table IV Chromosomal aberrations after addition of methanolic extract from *Alstonia scholaris* bark, stem and leaf alone as well as in combinations with Bleomycin
Table V Phytochemical studies of *Alstonia scholaris*
Table VI Quantitative comparison of phytochemical constituents present in bark, stem and leaf of *Alstonia scholaris*
Table VII Comparison between G₀ and G₂ groups of total chromatid breaks induced in *in vitro* cultured human lymphocytes after addition of aqueous and methanolic extracts from bark of *Alstonia scholaris* alone as well as with Bleomycin
Table VIII Chromosomal aberrations induced in *in vitro* cultured human lymphocytes treated with *Alstonia scholaris* bark aqueous and methanolic extract 24 hours pre-irradiation
Table IX Chromosomal aberrations induced in *in vitro* cultured human lymphocytes treated with *Alstonia scholaris* bark aqueous and methanolic extract simultaneously with irradiation
Table X Chromosomal aberrations induced in *in vitro* cultured human lymphocytes treated with *Alstonia scholaris* bark aqueous and methanolic extract 24 hours post-irradiation
Table XII Cytokinesis Blocked Micronuclei Assay in *in vitro* cultured human lymphocytes treated simultaneously with irradiation and aqueous as well as methanolic extracts from bark of *Alstonia scholaris*
Table XI Cytokinesis Blocked Micronuclei Assay in *in vitro* cultured human lymphocytes treated with aqueous and methanolic extracts from bark of *Alstonia scholaris* 24 hours pre-irradiation
Table XIII Cytokinesis Blocked Micronuclei Assay in *in vitro* cultured human lymphocytes treated with aqueous and methanolic extracts from bark of *Alstonia scholaris* 24 hours post-irradiation
List of Figures

Plate I Normal human metaphase chromosomes
Plate II
Fig 1: Metaphase plate with chromatid gap and chromatid breaks
Fig 2: Metaphase plate with terminal chromatid break
Plate III
Fig 1 & 2: Metaphase plates with chromosome break
Plate IV
Fig 1: Metaphase plate with dicentric chromosome
Fig 2: Metaphase plate with dicentric chromosome and acentric fragment
Plate V
Fig 1 & 2: Metaphase plates with ring chromosome
Plate VI
Fig 1 & 2: Metaphase plates with premature separated centromeres
Plate VII
Fig 1 & 2: Metaphase plates with endoreduplication
Plate VIII
Fig 1: Metaphase plate with hypodiploid chromosomes
Fig 2: Metaphase plate with hyperdiploid chromosomes
Plate IX
Fig 1: Total antioxidant activity of aqueous and methanolic extracts from bark of A. scholaris measured by Phosphomolybdenum method (Ascorbic acid used as standard)
Fig 2: Percentage of superoxide radicals scavenged by aqueous and methanolic extracts from bark of A. scholaris using Gallic acid as standard (NBT Reduction Method)
Fig 3: Percentage of free radicals scavenged by aqueous and methanolic extracts from bark of A. scholaris using Ascorbic acid as standard (DPPH scavenging method)
Plate X
Fig 1: Binucleated cell
Fig 2: Trinucleated cell
Fig 3 & 4: Binucleated cells with one micronucleus
Fig 5: Binucleated cell with two micronuclei
Fig 6: Mononucleated cell with two micronuclei
Fig 7: Nuclear bud
Fig 8: Nuclear bridge
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAs</td>
<td>Chromosomal Aberrations</td>
</tr>
<tr>
<td>MN</td>
<td>Micronuclei frequency</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>BLM</td>
<td>Bleomycin</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide Dismutase</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>ABE</td>
<td>Aqueous Bark Extract of Alstonia scholaris</td>
</tr>
<tr>
<td>ALE</td>
<td>Aqueous Leaf Extract of Alstonia scholaris</td>
</tr>
<tr>
<td>ASE</td>
<td>Aqueous Stem Extract of Alstonia scholaris</td>
</tr>
<tr>
<td>MBE</td>
<td>Methanolic Bark Extract of Alstonia scholaris</td>
</tr>
<tr>
<td>MLE</td>
<td>Methanolic Leaf Extract of Alstonia scholaris</td>
</tr>
<tr>
<td>MSE</td>
<td>Methanolic Stem Extract of Alstonia scholaris</td>
</tr>
<tr>
<td>NBT</td>
<td>Nitroblue Tetrazolium</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2-diphenyl-1-picrylhydrazyl assay</td>
</tr>
<tr>
<td>ABTS</td>
<td>2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) assay</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric ion Reducing Antioxidant Power Assay</td>
</tr>
<tr>
<td>CBMN</td>
<td>Cytokinesis-Block Micronucleus Assay</td>
</tr>
<tr>
<td>HSPC</td>
<td>Hematopoietic Stem and Progenitor Cells</td>
</tr>
<tr>
<td>MSC</td>
<td>Mesenchymal Stromal Cells</td>
</tr>
</tbody>
</table>