CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF PHOTOGRAPHS

ACRONYMS

1. INTRODUCTION 1-5

2. REVIEW OF LITERATURE 6-67

 2.1. History of algal biofuels 6
 2.2. Classification of biofuels 8
 2.3. Forms of biofuels 9
 2.4. Third generation biofuels 10
 2.5. Microalgae as biofuels 11

 2.5.1. Microalgae-advantageous biofuel over first and second generation biofuel 12
 2.6. Algal fuels versus other biofuels 14
 2.7. Microalgae classification 14

 2.7.1. Cyanobacteria 15
 2.7.2. Eustigmatophytes 15
 2.7.3. Diatoms 15
 2.7.4. Prymnesiophytes 16
 2.7.5. Golden-Brown algae 16
 2.7.6. Green algae 16
 2.8. Best source of microalgal biofuel production 14

 2.9. Growth parameters of microalgae 17

 2.9.1. Light 18
 2.9.2. Temperature 19
 2.9.3. Nutrients 19
2.9.4. Availability of nitrogen 19
2.9.5. Availability of phosphorous 20
2.9.6. Availability of salinity 21
2.9.7. Carbon dioxide and organic carbon 22
2.9.8. Micronutrients, macronutrients and chelates 22

2.10. Various components of microalgal cells 23
2.10.1. Microalgal lipids 24

2.11. Induction of lipid accumulation 24
2.11.1. Nutrients starvation 26

2.12. Use of microalgae for bioethanol production 28
2.12.1. Scheme of bioethanol production 29
2.12.2. Use of algal bioethanol as fuel 31

2.13. Transesterification 32

2.14. Advantages of biodiesel from algae oil 34

2.15. Investment in microalgal biofuel 35

2.16. Collection and screening of microalgae strains for biofuel production 38

2.17. Identification of microalgae 39
2.17.1. Morphological 39
2.17.2. Molecular 40

2.18. Cultivation of microalgae 41
2.18.1. Methods of cultivation of microalgae 43
2.18.1.1. Open ponds or raceway 43
2.18.1.2. Closed photobioreactor system 46

2.19. Fatty acid analysis of microalgae 48
2.19.1. Analytical methods for biofuel quality 49
2.19.1.1. Chromatographic methods 50
2.19.1.2. Gas chromatography
2.19.1.3. High performance liquid chromatography
2.19.1.4. Liquid chromatography with gas Chromatography
2.20. Research and development of algal biofuel production
2.21. Improvement in algal biology and bio-refinery
 2.21.1. Technology and methods used in genetic engineering of microalgae
 2.21.2. Biotechnological approach using genetic engineering
2.22. Status of advanced biofuel technology
2.23. Strategies for microalgal biofuels commercialization
2.24. Indian perspective for microalgal biofuel production

3. MATERIAL AND METHODS

3.1. Material
 3.1.1. Sample collection
 3.1.2. Chemical/media
3.2. Methods
 3.2.1. Isolation of microalgae
 3.2.1.1. Enrichment of samples
 3.2.1.2. Serial dilution method
 3.2.1.3. Streak plating method
 3.2.1.4. Micromanipulation
 3.3. Purification of microalgae (unialgal culture maintenance)
 3.3.1. Purification by axenization of microalgal isolates
 (a) Preparation of triple antibiotics solution for microalgae
 (b) Axenization process for microalgae
 3.4. Growth and maintenance

68-87
3.5. Morphological characterization of microalgae

3.5.1. Morphology and morphometry

3.6. Growth rate measurement of microalgae

3.6.1. Cell count by haemocytometer

3.7. Physical and cultural management

3.8. Cultivation of microalgae for biomass production

3.9. Extraction and estimation of lipids (% lipid on dry biomass basis)

3.10. Selection of promising isolate for high lipid accumulation

3.11. Physiological characterization of selected isolate

(Scenedesmus fw-28)

3.11.1. Total soluble protein analysis

3.11.2. Total carbohydrates analysis

3.11.3. Total chlorophyll content analysis

3.11.4. Total carotenoids content analysis

3.12. Optimization of physical and cultural variables for cellular lipid enhancement

3.13. Purification and characterization of lipids of two selected isolates

3.13.1. FAME analysis

3.13.2. GC-MS profiling

3.14. Identification of selected strain (s) using molecular approach

3.14.1. DNA extraction

3.14.2. 16S rRNA gene amplification

3.14.3 Electrophoresis

3.14.4 Sequencing

3.14.5 Blast Analysis

3.15 Statistical analysis of physical and cultural variables
4. RESULTS

4.1. Isolation of lipid producing microalgae from terrestrial and aquatic bodies 88

4.2. Characterization of isolates (visual) 89

4.2.1. Visual Characterization 89

4.2.2. Microscopy of isolates 90

4.2.3. Morphometric characterization 95

4.2.4. Growth rate measurement 97

4.2.5. Estimation of dry biomass (g/l) and lipid (%) 100

4.3. Physiological characterization of selected isolate No.03

(Scenedesmus fw-28) 104

4.4. Lipid enhancement strategy by physical and cultural variables for selected microalgae Scenedesmus fw-28 107

4.4.1. Light intensity 107

4.4.2. Alteration of light duration (continuous/intermittent) 110

4.4.3. Alteration of pH 113

4.4.4. Temperature 116

4.4.5. Type of carbon source 119

4.4.6. Carbon source concentration of optimized carbon source 122

4.4.7. Alteration of nitrogen source 125

4.4.8. Concentration of Optimized Nitrogen Source 128

4.4.9. Salinity source concentration 131

4.4.10. Phosphorus source concentration 134

4.5. Dry biomass and lipid % under optimized BG-11 medium 137

4.6. Lipid purification and characterization 140

4.7. Molecular identification of two potent microalgal strains 146

5. DISCUSSION 152-159