TABLE OF CONTENTS

CHAPTER 1.

<table>
<thead>
<tr>
<th>Sections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1-26</td>
</tr>
<tr>
<td>1.1 Historical Background of LIBS</td>
<td></td>
</tr>
<tr>
<td>1.2 Laser-induced Breakdown Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>1.2.1 Laser-induced plasma production on solid targets</td>
<td></td>
</tr>
<tr>
<td>1.2.2 Theoretical modeling of solid targets</td>
<td></td>
</tr>
<tr>
<td>1.2.3 Spectral emission from plasma</td>
<td></td>
</tr>
<tr>
<td>1.3 Advantages of LIBS and its comparison with other techniques</td>
<td></td>
</tr>
<tr>
<td>1.4 Motivation behind the present work</td>
<td></td>
</tr>
<tr>
<td>1.5 Organization of the thesis</td>
<td></td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 2.

<table>
<thead>
<tr>
<th>Sections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Design</td>
<td>27-53</td>
</tr>
<tr>
<td>2.1 Outline of LIBS technique</td>
<td></td>
</tr>
<tr>
<td>2.2 Components of a LIBS System</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Laser Source</td>
<td></td>
</tr>
<tr>
<td>2.2.2 Focusing Lens</td>
<td></td>
</tr>
<tr>
<td>2.2.3 Sample Stage</td>
<td></td>
</tr>
<tr>
<td>2.2.4 Collection Optics</td>
<td></td>
</tr>
<tr>
<td>2.2.5 Detection System</td>
<td></td>
</tr>
<tr>
<td>2.2.6 Synchronization of Laser with Spectrometer</td>
<td></td>
</tr>
<tr>
<td>2.3 Sample Preparation</td>
<td></td>
</tr>
<tr>
<td>2.4 Optimization of Experimental Parameters</td>
<td></td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 3.

<table>
<thead>
<tr>
<th>Sections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring of Vertical Migration of Heavy Elements in Soil using LIBS</td>
<td>54-67</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td></td>
</tr>
</tbody>
</table>
3.2 Trace impurity metal detection in silver ornament
3.3 LIBS spectrum of Aluminum plate
3.4 Detection of elements in soil sample
3.5 Leaching of heavy metals deep in to soil
3.6 Conclusion

Bibliography

CHAPTER 4.
Detection and Quantification of Heavy Metals in Brick-kiln Samples 68-85
4.1 Introduction
4.2 Experimental
 4.2.1 Site Investigated
 4.2.2 Preparation of sample
4.3 Qualitative analysis of Pb in soil sample
4.4 Quantification of Pb in soil sample
 4.4.1 Limit of Detection (LOD) of the experimental set-up
 4.4.2 Estimation of exact concentration of Pb in brick-kiln area soil
4.5 Conclusion

Bibliography

CHAPTER 5.
Development of Calibration-Free-Laser Induced Breakdown Spectroscopy 86-100
5.1 Introduction
5.2 Theoretical modeling of CF-LIBS
 5.2.1 Stoichiometric ablation
 5.2.2 Optically thin plasma
 5.2.3 Local thermal equilibrium (LTE)
5.3 Measurement of plasma parameters
5.3.1 Measurement of plasma temperature
5.3.2 Measurement of electron density
5.4 Development of CF-LIBS algorithm
5.5 Conclusion
Bibliography

CHAPTER 6.
Trace Detection of Pollutants using Conventional LIBS and CF-LIBS
6.1 Introduction
6.2 Instrumentation
 6.2.1 Materials / Samples collection and preparation
6.3 Spectral analysis of soil samples
6.4 Calibration-Free procedure
 6.4.1 Stoichiometric ablation
 6.4.2 Self-absorption
 6.4.3 Fulfillment of LTE
 6.4.4 Determination of plasma temperature
 6.4.5 CF-LIBS algorithm and calculations
6.6 Monitoring of heavy metals in the environmental samples
 6.6.1 CF-LIBS method
 6.6.2 Calibration curve method
 6.6.3 ICP-AES method
6.7 Conclusion
Bibliography

CHAPTER 7.
Application of CF-LIBS in the Study of Biomaterials
7.1 Introduction
7.2 Experimental description
7.3 Qualitative and quantitative analysis of elemental constituents of coral skeletons

7.3.1 Qualitative analysis of elemental composition of coral skeletons

7.3.2 Quantitative analysis of elemental composition of coral skeletons

7.3.3 The CF-LIBS approach

7.3.3.1 Plasma temperature

7.3.3.2 Local thermal equilibrium

7.3.3.3 Estimation of elemental concentration

7.4 Conclusion

Bibliography

CHAPTER 8.

Development of New Model to Minimize the Matrix Effect in LIBS Analysis

8.1 Introduction

8.2 Theoretical model

8.3 Development of working calibration curve for the monitoring of trace heavy metal concentration in materials

8.3.1 Preparation of reference samples

8.3.2 LIBS spectra of cadmium sulfate

8.3.3 LIBS spectra of standard soil samples and Cd contaminated soil sample

8.3.4 Calibration curves

8.3.5 Limit of detection

8.3.6 Analysis of unknown soil samples

8.4 Conclusion

Bibliography

CHAPTER 9.

Conclusion and future aspects

Appendix List of Publications