Chapter-V

ON APST RIEMANNIAN MANIFOLD WITH SECOND ORDER GENERALISED STRUCTURE
1. **INTRODUCTION:**

Let an n-dimensional Riemannian manifold M_n, on which there are defined a tensor field F of type (1,1) a tensor field T, a 1-form A and metric tensor g satisfying for arbitrary vector field X,Y,Z and a is any complex number (non-zero).

(1.1) $F^2 X = a^2 X - A(X)T$

(1.2) $\bar{X} = F(X)$

(1.3) $A(T) = -a^2$

(1.4) $A(FX) = 0$

(1.5) $F(T) = 0$

(1.6) $g(T,X) = A(X)$

(1.7) $g(FX,FY) = -a^2 g(X,Y) + A(X)A(Y)$

then structure (F,T,A,g) is called almost paracontact metric structure and manifold M_n will be called Almost paracontact metric Riemannian manifold.

Let us call such a structure as a generalised almost contact metric structure.

Let us define

(1.8) $F(\bar{X},Y) = g(FX,Y)$

and barring X in (1.8) we have

(1.9) $'F(X,Y) = g(F^2 X,Y)$

(1.9) by virtue of (1.1) gives

(1.10) $'F(X,Y) = a^2 g(X,Y) - A(X)A(Y)$

Now barring Y in (1.8) we have
(1.11) \(F(X, Y) = g(FX, FY) \)

(1.11) with the help of (1.7) gives

(1.12) \(F(X, Y) = -\{a^2 g(X, Y) - A(X) A(Y)\} \)

Thus from the relation (1.10) and (1.12) we have

(1.13) \(F(X, Y) = F(X, Y) \)

Replacing X by T in equation (1.8) and making use of (1.5), we obtain-

(1.14) \(F(T, Y) = 0 \)

Barring X in equation (1.12) and making use of (1.1) and (1.14) we get

(1.15) \(F(X, Y) = -a^2 F(X, Y) \)

Now barring Y in (1.7) and making use of (1.4) and (1.5) in the resulting equation, we obtain

(1.16) \(g(FX, Y) = -g(X, FY) \)

Thus from equation (1.8) and (1.16), we have

(1.17) \(F(X, Y) = -F(Y, X) \)

2. **NIJENHUIS TENSOR**

Nijenhuis tensor is given by.

(2.1) \(N(X, Y) = \begin{bmatrix} X \end{bmatrix} Y + \begin{bmatrix} X \end{bmatrix} Y + \begin{bmatrix} X \end{bmatrix} Y + \begin{bmatrix} X \end{bmatrix} Y \)

Making use of (1.1) in (2.1), we get-

(2.2) \(N(X, Y) = \begin{bmatrix} X \end{bmatrix} Y + a^2 [X,Y] - A([X,Y]) T - \begin{bmatrix} X \end{bmatrix} Y - [X,Y] \)

Now let us put

106
(2.3) \[P(X,Y) = [\bar{X}, \bar{Y}] - [\bar{X}, \bar{Y}] \]

(2.4) \[Q(X,Y) = [\bar{X}, \bar{Y}] - [\bar{X}, Y] \]

(2.5) \[H(X,Y) = [\bar{X}, \bar{Y}] + a^2 [X,Y] \]

THEOREM (2.1):

The Nijenhuis tensor and \(P(X,Y) \) are related as-

\[
(2.6) \quad a^2 P(X,Y) - P(\bar{X}, \bar{Y}) = a^2 N(X,Y) - A(Y)[\bar{X}, T] + \\
+ a^2 A(Y)[X, T] + \\
+ A(Y) A([X, T]) T.
\]

PROOF:

Barring \(Y \) in (2.3) and using (1.1), we obtain-

\[
(2.7) \quad P(X, \bar{Y}) = a^2 [\bar{X}, Y] + A(Y)[\bar{X}, T] - \\
- a^2 [\bar{X}, \bar{Y}] - A(Y)[X, T].
\]

Again barring the above equation and making use of (1.1)

\[
P(\bar{X}, \bar{Y}) = a^2 [\bar{X}, Y] + A(Y)[\bar{X}, T] - \\
- A(Y) A([X, T]) T\}
\]

\[
(2.8) \quad P[\bar{X}, \bar{Y}] = a^2 [\bar{X}, Y] + A(Y)[\bar{X}, T] - a^4 [X,Y] + \\
+ A(Y) A([X,T]) T.
\]

Now from the equation (2.3) and (2.8), we obtain-
(2.9) \(a^2 P(X, Y) - P(X, Y) \)

\[= a^2 [\bar{X}, \bar{Y}] - a^2 [\bar{X}, Y] + a^4 [X, Y] -
\]
\[- A(Y)[\bar{X}, T] - a^2 A(X, Y) T +
\]
\[+ a^2 A(Y)[X, T] - A(Y) A([X, T]) T. \]

Making use of (2.2) in (2.9) we get the result.

COROLLARY (2.1):

In a differentiable manifold \(M^n \), we have

(2.10) \(a^2 P(X, T) = a^2 N(X, T) + a^2 [\bar{X}, T] -
\]
\[- a^4 [X, T] - a^2 A([X, T]) T. \]

PROOF:

Putting \(T \) for \(Y \) in (2.6) and using (1.5) and (1.3), we get the result.

THEOREM (2.2):

In a differentiable manifold \(M^n \), we have

(2.11) \(a^2 Q(X, Y) - Q(\bar{X}, Y) = a^2 N(X, Y) - A(X)[\bar{T}, \bar{Y}] +
\]
\[+ a^2 A(X)[T, Y] + A(X) A([T, Y]) T \]

PROOF:

Barring \(X \) in (2.4) and making use of (1.1), we get

(2.12) \(Q(\bar{X}, Y) = a^2 [X, \bar{Y}] + A(X) [T, \bar{Y}] - a^2 [\bar{X}, \bar{Y}] +
\]
\[+ A(X) [\bar{T}, Y]. \]
Now barring the whole equation (2.12) and making use of (1.1), we get-

\[Q[\bar{X}, Y] = a^2 [\bar{X}, \bar{Y}] + A(X)[\bar{T}, \bar{Y}] -
\]

\[-a^2 \{a^2 [X, Y] - A([X, Y])T\} +
\]

\[+ A(X)\{a^2 [T, Y] - A([T, Y])T\}. \]

(2.13) \[Q[\bar{X}, Y] = a^2 [\bar{X}, \bar{Y}] + A(X)[\bar{T}, \bar{Y}] -
\]

\[-a^4 [X, Y] + a^2 A([X, Y])T +
\]

\[+ a^2 A(x)[T, Y] - A(x) A([T, Y])T. \]

Now from (2.4) and (2.13), we get

(2.14) \[a^2 Q(X, Y) - Q[\bar{X}, Y] =
\]

\[= a^2 [\bar{X}, \bar{Y}] - a^2 [\bar{X}, \bar{Y}] - a^2 [\bar{X}, \bar{Y}] +
\]

\[+ a^4 [X, Y] - a^2 A([X, Y])T -
\]

\[- A(X)[\bar{T}, \bar{Y}] - a^2 A(X)[T, Y] -
\]

\[- A(X) A([T, Y])T. \]

Thus from (2.2) and (2.14) we obtain the required result.

COROLLARY (2.2):

In a generalized almost contact metric manifolds \(M^n \), we have

(2.15) \[a^2 Q(T, Y) =
\]

\[= a^2 N(T, Y) + a^2 [T, \bar{Y}] - a^4 [T, Y]
\]

\[= -a^2 A([T, Y])T. \]
PROOF:
Replacing X by T in (2.11) and using (1.3) and (1.5), we get the equation (2.15)

THEOREM (2.3):

In a generalized almost contact metric structure manifold M^n

\[(2.16)\ a^2 H(X, Y) - H(\overline{X}, \overline{Y}) = a^2 N(X, Y) - \]
\[-a^2 A([X, Y]) T - A(X) \overline{T, \overline{Y}}\]

PROOF:

Barring X in (2.5) and making use of (1.1)

\[(2.17)\ H(\overline{X}, Y) = a^2 \overline{X, Y} + A(X) \overline{T, \overline{Y}} - a^2 (\overline{X}, Y)\]

Now barring the whole equation (2.17) and making use of (1.1)

\[(2.18)\ H(\overline{X}, \overline{Y}) = a^2 \overline{X, Y} - A(X) \overline{T, \overline{Y}} + a^2 \overline{X, \overline{Y}}\]

Thus, with the help of (2.2), (2.5) and (2.18) we get (2.16)

COROLLARY (2.3):

The equation (2.16) is equivalent to

\[(2.19)\ a^2 H(T, Y) = a^2 N(T, Y) - a^2 A([T, Y]) + a^2 \overline{T, \overline{Y}}\]

PROOF:

Replacing X by T in (2.16) and using the equation (1.3) and (1.5), we get the result.

THEOREM (2.4):

In a generalized almost contact metric structure manifold M^n, we have
(2.19) \(H(T,Y) - Q(T,Y) = a^2[T,Y] \)

Proof:

Equation (2.20) follows directly with the help of equation (2.15) and (2.19).

Theorem (2.5):

In a generalized almost contact metric manifold \(M^n \), we have

\[
(2.21) \ a^2H(X,Y) - H\left[\overline{X},Y\right] = \left\{ a^2P(X,Y) - P\left[\overline{X},\overline{Y}\right] + \right.
\]
\[
+ A(Y)\left[\overline{X},T\right] - a^2A(Y)[X,T] -
\]
\[
- A(Y)A([X,T])T - a^2T([X,Y])T -
\]
\[
- A(X)[T,\overline{Y}] .
\]

Proof:

Proof follows with the help of equation (2.6) and (2.16)

Theorem (2.6):

In order that a generalized almost contact metric manifold be completely integrable it is necessary that

\[
(2.22) \ A\left[\overline{X},\overline{Y}\right]T = 0
\]

Proof:

Barring \(X \) in (2.2) and with the help of equation (1.1), we get

\[
(2.23) \ N(X,Y) = a^2(X,\overline{Y}) - A(X)[T,\overline{Y}] + a^2[\overline{X},Y] -
\]
\[
- A([\overline{X},Y])T - [\overline{X},Y] - a^2[\overline{X},Y] -
\]
\[
+ A(X)[T,\overline{Y}] .
\]

Now barring the whole equation (2.23) and using (1.1), we obtain
(2.24) \[N \left[\bar{X}, Y \right] = a^2 \left[X, \bar{Y} \right] - A(X) \left[T, \bar{Y} \right] + a^2 \left[\bar{X}, Y \right] - \]
- \[a^2 \left[\bar{X}, \bar{Y} \right] + A([\bar{X}, \bar{Y}])T - a^4 [X, Y] + \]
\[+ a^2 A([X, Y])T + a^2 A(X)[T, Y] + \]
\[+ A(X)A([T, Y])T. \]

Form the equation (2.2) and (2.24), we have

(2.25) \[N \left[\bar{X}, Y \right] + a^2 N(X, Y) \]
\[= - A(X) \left[T, \bar{Y} \right] + A([\bar{X}, \bar{Y}])T + \]
\[+ a^2 A(X)[T, Y] + A(X)A([T, Y])T. \]

(2.26) \[N(T, Y) = a^2 [T, Y] + A([T, Y])T - \left[T, \bar{Y} \right]. \]

Using (2.24) in (2.26) we obtain

(2.27) \[N \left[\bar{X}, Y \right] + a^2 N(X, Y) = A(X)N(T, Y) + \]
\[+ A([\bar{X}, \bar{Y}])T. \]

For completely integrable manifold equation (2.27) reduces to equation (2.22)

THEOREM (2.7):

In a completely integrable generalized almost contact metric structure manifold \(M^n \), we have the following result-

(2.28) \[A(X) \left[T, \bar{Y} \right] - \left[T, \bar{Y} \right] + A([\bar{X}, \bar{Y}])T = \]
\[= A(Y \left[\bar{X}, T \right] - \left[\bar{X}, T \right]) + A([X, \bar{Y}])T. \]

PROOF:

Barring X in equation (2.2) and making use of (1.1), we get
(2.29) \(N(\bar{X}, \bar{Y}) = a^2 \langle X, \bar{Y} \rangle - A(X)[T, Y] + a^2 \left[\bar{X}, Y \right] - A\left(\left[\bar{X}, Y \right] \right) T - \left[\bar{X}, Y \right] - a^2 \left[X, \bar{Y} \right] + A(X)\left[\bar{T}, Y \right] \).

Again barring \(Y \) in equation (2.2) and making use of (1.1), we get

(2.30) \(N(\bar{X}, \bar{Y}) = a^2 \left[\bar{X}, Y \right] - A(Y)\left[\bar{X}, T \right] + a^2 \left[X, \bar{Y} \right] + A\left(\left[X, \bar{Y} \right] \right) T - a^2 \left[X, \bar{Y} \right] + A(Y)\left[\bar{X}, T \right] \).

Now from these two equation (2.29) and (2.30) and using \(N(X, Y) \), we have the required result (2.28).
REFERENCE

