LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE DETAILS</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1. Pivotal features of Smart grid technology</td>
<td>2</td>
</tr>
<tr>
<td>Figure 3.1. Technology, characteristics, components and challenges of Smart grid</td>
<td>23</td>
</tr>
<tr>
<td>Figure 3.2. Various stakeholders of Smart grid technology</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3.3. Various components of Smart Microgrid</td>
<td>27</td>
</tr>
<tr>
<td>Figure 3.4. Layered Smart grid infrastructure</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3.5. Home Area Network</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.6. Components of AMI</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.7. Bluetooth protocol stack</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3.8. Piconet and Scatternet</td>
<td>40</td>
</tr>
<tr>
<td>Figure 3.9. Communication stack of WirelessHART standard</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.10. WirelessHART protocol stack</td>
<td>44</td>
</tr>
<tr>
<td>Figure 3.11. Zigbee protocol stack</td>
<td>46</td>
</tr>
<tr>
<td>Figure 3.12. Zigbee network architecture</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.13. 6LOWPAN network architecture</td>
<td>51</td>
</tr>
<tr>
<td>Figure 3.14. 6LOWPAN protocol stack</td>
<td>52</td>
</tr>
<tr>
<td>Figure 3.15. WLAN protocol stack</td>
<td>53</td>
</tr>
<tr>
<td>Figure 3.16. WLAN architecture</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.17. Z wave network architecture</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3.18. WiMAX protocol stack</td>
<td>58</td>
</tr>
<tr>
<td>Figure 3.19. 5G protocol stack</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.20. Various components of 5G</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.21. Cognitive radio gateways</td>
<td>62</td>
</tr>
</tbody>
</table>
Figure 4.1. Conceptual diagram of cross layer design
Figure 4.2. Throughput of nodes for no RTS mechanism
Figure 4.3. Throughput of nodes for RTS threshold-1
Figure 4.4. Throughput of nodes for RTS threshold-25
Figure 4.5. Throughput of nodes for RTS threshold-102
Figure 4.6. Mean values of result
Figure 4.7. Media access delay of nodes for NO RT
Figure 4.8. Media access delay of nodes for RTS threshold-1
Figure 4.9. Media access delay of nodes for RTS threshold-25
Figure 4.10. Media access delay of nodes for RTS threshold-102
Figure 4.11. Mean values of results
Figure 4.12. Total packet delay of nodes for No RTS/CTS
Figure 4.13. Total packet delay of nodes for RTS threshold-16
Figure 4.14. Total packet delay of nodes for RTS threshold-256
Figure 4.15. Total packet delay of nodes for RTS threshold-1024
Figure 4.16. Mean values of results
Figure 4.17. Throughput of nodes for default EDCA parameters
Figure 4.18. Throughput of nodes for adapted EDCA-1
Figure 4.19. Throughput of nodes for adapted EDCA-2
Figure 4.20. Throughput of nodes for adapted EDCA-3
Figure 4.21. Throughput of nodes for adapted EDCA-4
Figure 4.22. Throughput of nodes for adapted EDCA-5
Figure 4.23. Mean values of results
Figure 4.24. Media access delay for default EDCA parameters
Figure 4.25. Media access delay of nodes for adapted EDCA-1

Figure 4.26. Media access delay of nodes for adapted EDCA-2

Figure 4.27. Media access delay of nodes for adapted EDCA-3

Figure 4.28. Media access delay of nodes for adapted EDCA-4

Figure 4.29. Media access delay of nodes for adapted EDCA-5

Figure 4.30. Mean values of Media access delay

Figure 4.31. Total packet delay for default EDCA parameters

Figure 4.32. Total packet delay of nodes for adapted EDCA-1

Figure 4.33. Total packet delay of nodes for adapted EDCA-2

Figure 4.34. Total packet delay of nodes for adapted EDCA-3

Figure 4.35. Total packet delay of nodes for adapted EDCA-4

Figure 4.36. Total packet delay of nodes for adapted EDCA-5

Figure 4.37. Mean values of total packet delay

Figure 4.38. Diagram of the network to be optimized

Figure 4.39. WLAN Throughput of different access points

Figure 4.40. Network load of different BSS

Figure 4.41. WLAN delay of different access points

Figure 4.42. WLAN Media access delay of different access points

Figure 4.43. WLAN throughput comparison for Block acknowledgement vs RTS mechanism

Figure 4.44. WLAN media access delay comparison for Block acknowledgement vs RTS mechanism

Figure 4.45. WLAN delay comparison for Block acknowledgement vs RTS mechanism

Figure 4.46. WLAN delay with and without fragmentation

Figure 4.47. WLAN Media access delay with and without fragmentation
Figure 4.48. WLAN retransmission attempts with and without fragmentation 125
Figure 4.49. WLAN throughput with and without fragmentation 125
Figure 4.50. WLAN delay for different fragmentation thresholds and without fragmentation 126
Figure 4.51. WLAN Media access delay for different fragmentation thresholds and without fragmentation 126
Figure 4.52. WLAN retransmission attempts for different fragmentation thresholds and without fragmentation 127
Figure 4.53. WLAN throughput for different fragmentation thresholds and without fragmentation 128
Figure 4.54. WLAN optimization with RTS and fragmentation mechanisms 128
Figure 4.55. WLAN delay optimization with RTS and fragmentation mechanisms 129
Figure 4.56. WLAN retransmission attempts optimization with RTS and fragmentation mechanisms 129
Figure 4.57. WLAN throughput optimization with RTS and fragmentation mechanisms 130
Figure 4.58. WLAN throughput optimization with different values of RTS and fragmentation thresholds 130
Figure 4.59. WLAN delay optimization with different values of RTS and fragmentation thresholds 131
Figure 4.60. WLAN Media access delay optimization with different values of RTS and fragmentation thresholds 131
Figure 4.61. WLAN buffer size optimization for higher throughput 132
Figure 4.62. WLAN buffer size optimization for lower delay 133
Figure 4.63. WLAN buffer size optimization for lower media access delay 134
Figure 4.64. WLAN throughput optimization with Greenfield operation 135
Figure 4.65. WLAN throughput optimization with RTS, Fragmentation and Greenfield operation parameters 136
Figure 4.66. WLAN delay optimization with RTS, Fragmentation and Greenfield operation parameters 136
Figure 4.67. WLAN Media access delay for optimized value of RTS, Fragmentation and Greenfield operation parameters
Figure 4.68. Default values of CWmin and CWmax
Figure 4.69. Optimized values of CWmin and CWmax
Figure 4.70. WLAN delay with and without Contention window optimization
Figure 4.71. WLAN Media access delay with and without Contention window optimization
Figure 4.72. Frame aggregation parameters
Figure 4.73. WLAN Media access delay with and without frame aggregation
Figure 4.74. WLAN Throughput with and without frame aggregation
Figure 4.75. WLAN Delay with and without Frame aggregation, RTS and Fragmentation mechanisms
Figure 4.76. WLAN Throughput with and without Frame aggregation, RTS and Fragmentation mechanisms
Figure 4.77. WLAN Media access delay with and without Frame aggregation, RTS and Fragmentation mechanisms
Figure 4.78. Values of various parameters
Figure 4.79. Network optimization by considering various parameters
Figure 4.80. Neighborhood area network
Figure 4.81. Default AODV parameters
Figure 4.82. Reduced routing traffic parameters
Figure 4.83. Reduced routing traffic parameters with gratuitous route reply flag disabled
Figure 4.84. AODV protocol optimization-Routing traffic sent
Figure 4.85. AODV protocol optimization-Routing traffic received
Figure 4.86. AODV protocol optimization-Route discovery time
Figure 4.87. AODV protocol optimization-Total route errors sent
Figure 4.88. Comparison of throughput of different routing protocols for network optimization

Figure 4.89. Comparison of WLAN delay of different routing protocols for network optimization

Figure 4.90. Comparison of WLAN Media access delay of different routing protocols for network optimization

Figure 4.91. Default OLSR parameters

Figure 4.92. Optimized OLSR parameter

Figure 4.93. WLAN Throughput for default and optimized OLSR parameters

Figure 4.94. Default parameters

Figure 4.95. Optimized parameters

Figure 4.96. WLAN Media access delay for default and optimized OLSR parameters

Figure 4.97. WLAN Throughput for default and optimized OLSR parameters

Figure 5.1. Block diagram of developed prototype

Figure 5.2. Sensing and measurement in ACS 712

Figure 5.3. Flow diagram of designed prototype

Figure 5.4. Circuit diagram of designed prototype

Figure 5.5. Flowchart of monitoring of prototype

Figure 5.6. Flowchart of control of prototype

Figure 5.7. Snapshot of monitoring and control of developed prototype

Figure 5.8. Block diagram of designed prototype

Figure 5.9. Flow diagram of designed prototype

Figure 5.10. Snapshot of developed prototype

Figure 5.11. Flowchart of monitoring of prototype

Figure 5.12. Flowchart of controlling of prototype

Figure 5.13. Snapshot of remote wireless monitoring and control of smart power system through HTML webpage
Figure 5.14. Snapshot of remote wireless monitoring and control of smart power system through HTML webpage

Figure 5.15. Snapshot of remote wireless monitoring and control of smart power system on Arduino serial monitor.

Figure 5.16. Snapshot of remote wireless monitoring and control of smart power system on serial terminal program

Figure 5.17. Graph of System-1

Figure 5.18. Graph of System-2

Figure 5.19. Graph of System-3

Figure 5.20. Graph of all three systems

Figure 5.21. Graph of System-1

Figure 5.22. Graph of System-2

Figure 5.23. Graph of System-3

Figure 5.24. Graph of all three systems

Figure 5.25. Snapshot of remote wireless monitoring and control of smart power system through HTML webpage in Wide Area Network

Figure 5.26. Snapshot of remote wireless monitoring and control of smart power system through HTML webpage in Wide Area Network

Figure 5.27. Snapshot of remote wireless monitoring and control of smart power system through HTML webpage in Wide Area Network

Figure 5.28. Snapshot of remote wireless monitoring and control of smart power system through HTML webpage in Wide Area Network

Figure 6.1. EMI Causes in Smart Grid

Figure 6.2. Conceptual model of Smart grid

Figure 6.3. Major challenges of WSN

Figure 6.4. Types of attacks in WSN