CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgement</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>viii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xix</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xxi</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 General 2
1.2 Alzheimer’s disease 2
1.3 Present treatment strategy of AD 3
1.4 Diagnosis of AD 6
1.5 Drug designing 7
1.6 Computational drug designing 9
1.7 Literature survey and identification of the research problem 10
1.8 Objectives of this research work 11
1.9 Research methodology 12
1.10 Highlight of the research work 13
1.11 Organization of the thesis 13
1.12 Summary 14

2. COMPUTATIONAL DRUG DESIGNING

2.1 General 17
2.2 Drug likeness 18
2.3 Molecular descriptors 20
2.4 ADMET 23
2.4.1 Absorption 23
2.4.2 Distribution 24
2.4.3 Metabolism 24
2.4.4 Elimination (Excretion) 25
2.5 Physiochemical properties 26
 2.5.1 Ionization 26
 2.5.2 Dissolution and solubility 27
 2.5.3 Lipophilicity 27
 2.5.4 Hydrogen bonding 27
2.6 Machine learning approach in drug designing 28
 2.6.1 Support Vector Machine 29
 2.6.2 Artificial Neural Network (ANN) 32
2.7 Molecular modeling 33
 2.7.1 Ab initio 33
 2.7.2 Semiemperical 35
 2.7.3 Modeling the solid state 35
 2.7.4 Molecular mechanics 36
2.8 Molecular simulation 37
2.9 Structure-Property Relationships 37
2.10 Summary 38

3. MOLECULAR BASIS OF ALZHEIMER’S DISEASE
3.1 General 40
3.2 Risk factors of Alzheimer’s disease 40
3.3 Symptoms of AD 41
3.4 Types of AD 42
 3.4.1 Early onset of AD (EOAD) 42
 3.4.2 Late onset of AD (LOAD) 44
3.5 Microsatellite 44
3.6 Microsatellite instability 45
3.7 Amyloidogenic and non-Amyloidogenic pathways 45
3.8 APP cleavage & Amyloid-beta degradation 46
3.9 Summary 48
4. AD PROTEIN ANALYSIS
 4.1 General 50
 4.2 Protein analysis 50
 4.2.1 Similarity analysis 52
 4.2.2 Motif identification 52
 4.2.3 Subcellular location of AD proteins 53
 4.2.4 Instability index 54
 4.2.5 Aliphatic index 54
 4.2.6 Grand Average of Hydropathy (GRAVY) 54
 4.2.7 Half-life period of protein 55
 4.3 Protein surface scan 56
 4.4 Secondary structure analysis 59
 4.5 Modeling and simulation 60
 4.6 Electrostatic analysis 63
 4.7 Summary 65

5. DNA BASED DRUG DESIGNING
 5.1 General 68
 5.2 Gene repair 68
 5.3 Tools and software used for the characterization of AD genes 69
 5.3.1 NCBI – National Centre for Biotechnology Information 69
 5.3.2 HGMD – Human Genome Mutation Database 69
 5.3.3 PDB – Protein Data Bank 70
 5.3.4 SMART – Simple Modular Architecture Research Tool 70
 5.3.5 ORF Finder – Open Reading Frame Finder 70
8. LIGAND SCREENING
 8.1 General 104
 8.2 Search for hit molecules 105
 8.2.1 Screening using molecular properties and functional groups (1D) 106
 8.2.2 Screening using BCUT descriptors (2D) 109
 8.2.3 Screening using descriptors (3D) 109
 8.2.4 Screening using Docking studies (4D) 112
 8.3 Pharmacophore modeling 112
 8.4 Tanimoto coefficient 112
 8.5 ADMET studies of Curcumin 114
 8.5.1 Absorption 114
 8.5.2 Distribution 114
 8.6.3 Metabolism prediction 115
 8.6.4 Toxicity prediction 115
 8.6 Modeling of Curcumin 116
 8.8 Summary 121

9. IDENTIFICATION OF POTENTIAL DRUGS
 9.1 General 123
 9.2 Modeling DNA-ligand interaction 124
 9.3 Gene silencing technique 126
 9.4 Engineering gene circuits 126
 9.5 Protein-drug interaction 127
 9.6 Multi targeted ligand molecules for AD 128
 9.7 DNA-ligand interactional studies 128
 9.8 Protein-ligand interactional studies 129
 9.9 Drug modification 129
 9.10 Summary 135

10. CONCLUSION
 10.1 General 138
 10.2 Gene analysis 138
10.3 Protein analysis 139
10.4 RNA based drug designing 139
10.5 DNA-protein complexes 139
10.6 Ligand identification 140
10.7 Fine tuning of the ligand molecule 140
10.8 Scope for further studies 141
10.9 Summary 141

REFERENCES 142

PUBLICATIONS 170