Acknowledgements

First and above all, I thank and praise Allah, the almighty for providing me this opportunity and granting me the capability to proceed successfully.

The Persons who deserves a first and foremost mention are my Father, Syed Maqboolur Rahman and my Mother, Kaiser Jahan.

I owe my most sincere gratitude to my esteemed Supervisor Dr. (Er.) Mohd. Haris Siddiqui, Head and Associate Professor, Department of Bioengineering Integral University, Lucknow. It has been an honour to be his Ph.D student.

I am extremely indebted to my Co-Supervisor Dr. Salman Akhtar, Associate Professor (Jr), Department of Bioengineering, Integral University, Lucknow, for the astute discussion, offering valuable advice, for his support during the whole period of the study and especially for his patience and guidance during the writing process.

I wish to express my warm and sincere thanks to Prof. S.W. Akhtar, Chancellor, Integral University, Lucknow for endowing with indispensable infrastructure, resources and a workplace to accomplish my work.

I gratefully acknowledge Prof. Aqil Ahmad, Vice-Chancellor, Dr. I. A. Khan, Registrar, Prof. A. R. Khan, Examination Controller, Integral University for their insight and constant encouragement.

I am also indebted to Dr. Syed Nadeem Akhtar, Dean (Faculty of Engineering and Director, Planning and Research), Mr. Ahmad Ghazali Kidwai, for all the help and administrative support they provided me during my entire research.

My sincere thanks also goes to Dr. Mohd Sajid Khan, Associate Professor, Department of Biosciences Integral University, Lucknow, made a significant contribution and thus adding a piece of very novel result to my research, they deserve special thanks.

I was extraordinarily fortunate in having Dr. Preeti Bajpai as the Head, Department of Biosciences, for their motivation and attention which has provided good and smooth basis for my Ph.D. tenure.
I express my deep sense of gratitude towards Dr. Syed Mohd. Danish Rizvi, Department of Pharmacology and toxicology, College of Pharmacy, University of Hail, Hail Saudi Arabia, Dr. Mohd. Qazi Sajid Jamal, Assistant Professor Co-ordinator Bioinformatics Unit Department of Health Information Management College of Applied Medical Sciences, Buraydah Colleges Al Qassim-Buraydah King Abdul Aziz Road East Qassim University Kingdom of Saudi Arabia, Dr. Khursheed Ahmad, Dept of Medical Biotechnology, Yeungnam University republic of Korea and Dr. Mohd. Kalim Ahmad Khan, Assistant Professor, Department of Bioengineering, Integral University, Lucknow.

A note of thanks and appreciation also goes to my friends and colleagues: Mr. Latafat Choudhary, Mr. Azhar Kamal, Dr. Usman Sayeed, Mr. Taufeeq Ahmad, Mr. Mohd. Shadif, Mr. Azmi Zaheer Naqvi, Department of Bioengineering, for their motivation and encouragement support.

Collective and individual acknowledgements are also owed to many Research Scholar at Integral University whose presence, somehow perpetually refreshed, helped and are definitely memorable: Ms. Aisha Khatoon, Er. Neha Sharma, Er. Farhan Ahmad, Mr. Abu Bakar, Ms. Eram Wahid, Mr. Ajijur Rehman, Mr. Abdul Mabood, Ms. Mala Sharma and Er. Eram Shakil.

Thanks extraordinarily goes to my compassionate, loving and caring siblings. I remember their invariable support when I encountered difficulties in finishing my thesis especially in the last of its stage. They always gave me words of encouragement.

Words fail to express my appreciation to my ever supportive brother, sisters and all family members for encouragement, generous care and a pleasant sense of humour which has helped me smoothly sailing through. In particular, I am also grateful to Syed Ghulam Jilani, for their full support and encouragement during my research.

At this moment of accomplishment, last but not the least I would like to thank my grandfather Dr. Syed Jamilur Rahman and Grandmother Mrs. Waliun Nisha for always supporting me morally and spiritually.
Finally, I would like to thank everybody who was important to the successful realization of my thesis, as well as expressing my apology that I could not mention personally one by one.

Syed Sayeed Ahmad
LIST OF TABLES

Table 1.1	List of FDA approved drugs for the cure of Alzheimer’s disease.	15
Table 1.2	List of novel therapeutic candidates against Alzheimer’s disease.	19
Table 2.1	Lipinski rule of five: Molecular weight, H-bond acceptors (HBA), H-bond donor (HBD) and MolLogP for all the selected compounds.	28
Table 2.2	Molecular docking studies of selected inhibitors with BACE1 protein.	31
Table 2.3	The free binding energies (in units of kcal/mol) and interacting amino acid residues to single and Aggregated form of the amyloid peptide of top four ligands.	36
Table 2.4	The blood-brain barrier data of selected ligands calculated by Pre-Admet.	37
Table 3.1	Interacting Amino acid residues and the H-bond distance between Amyloid-beta and natural compound.	45
Table 3.2	Interaction energies of Aβ with Ligands (Kcal/mol) obtained from molecular docking analysis.	47
Table 3.3	Amino acid residues involve in hydrogen bond formation in the protein-protein interaction.	50
Table 3.4	Zdock score of protein-protein and Complex – Protein interaction	52
Table.5.1	The obtained value of Km, Ki and IC50 from different plots using the substrate AChI.	71
LIST OF FIGURES

Figure 1.1: Different Stages of Alzheimer’s disease. 4

Figure 1.2: Three-Dimensional structure of Alzheimer’s Amyloid beta [PDB ID: 2BEG] 6

Figure 1.3: Apo structure of Beta-secretase [PDB ID: 1W50]. 7

Figure 1.4: Working of beta-secretase in the formation of Amyloid beta and Plaque formation. 9

Figure 1.5: Structure of recombinant human acetylcholinesterase [PDB ID: 3LII]. 11

Figure 1.6: AChE mechanism of action. 13

Figure 1.7: Structure of FDA approved drugs for the cure of Alzheimer’s disease. 15

Figure 1.8: Structure of novel therapeutic candidates for the treatment of Alzheimer’s disease. 20

Figure 2.1: The structure of ligands molecule (a). 2,2,4-trihydroxychalcone (b). Galangin (c). Ajmalicine (d). Yohimbine (e). Huperzine A (f). Emetine (g). Physostigmine (h). Vincamine. 30

Figure 2.2: Interaction of Ajmalicine docked with the BACE1. The ligand, Ajmalicine, has been shown in ‘stick’ representation. 32

Figure 2.3: The binding energy and no. of hydrogen bonds of selected compounds. 34

Figure 2.4: Docked complex of aggregated amyloid beta with inhibitors Ajmalicine. 35

Figure 3.1: The three-dimensional structures of the protein. (A). Amyloid beta (PDB ID: 2BEG. (B). RAGE (PDB ID: 2ENS). 41

Figure 3.2: 2D chemical structures of the compounds (a). Ajmalicine (b). Emetine (c). Vincamine. 42

Figure 3.3 (A). The complex shows interacting amino acid residues and hydrogen bonds formed between compound Ajmalicine (The ligand, Ajmalicine, has been shown in green ‘stick’ representation.) and Amyloid- beta (B). The complex shows interacting amino acid residues and hydrogen bonds formed between compound Emetine (The ligand, Emetine, has been shown in green ‘stick’ representation.) and Amyloid- beta (C). The complex interacting amino acid residues and hydrogen bonds formed between compound
Vincamine (The ligand, Vincamine, has been shown in green ‘stick’ representation.) and Amyloid-beta.

Figure 3.4: Protein-protein interactions (A). A\beta (B). RAGE (C). The complex of A\beta and RAGE obtained by the protein–protein docking method. Sky and brown stick colour representation are the amino acid residues of A\beta and RAGE respectively involved in H-bond formation.

Figure 3.5: The complex - protein interaction (A). The complex of $\text{A\beta} + \text{Ajm}$ (B). The complex of $\text{A\beta} + \text{Eme}$ (C). The complex of $\text{A\beta} + \text{Vnc}$. (D). Structure of RAGE protein. (E). Interacting Complex structure of ($\text{A\beta} + \text{Ajm}$) with RAGE obtained by the protein–protein docking method. (F). The interacting complex structure of ($\text{A\beta} + \text{Eme}$) with RAGE obtained by the protein–protein docking method. (G). The interacting complex structure of ($\text{A\beta} + \text{Vnc}$) with RAGE obtained by the protein–protein docking method.

Figure 4.1: 3D structure of target protein.

Figure 4.2: 2D structure of ligand Vincamine.

Figure 4.3: Interaction of Vincamine docked to acetylcholinesterase (AChE). The ligand Vincamine has been shown in ‘green colour stick’ representation.

Figure 4.4: Graph representing the Drug-likeness model score.

Figure 5.1: Lineweaver–Burk plot of acetyl cholinesterase inhibition by different concentration of vincamine inhibitor.

Figure 5.2: Eadie- Hofstee plot used for the determination of Km.

Figure 5.3: Hanes plots used for the determination of K_m.

Figure 5.4: Dixon's Plot: inhibition of AChE by Vincamine.

Figure 5.5: Secondary plot (a) used to calculate the inhibition constant K_i and (b) used to calculate the inhibition constant K_i & K_m.

Figure 5.6: AChE inhibition curves for Vincamine.
List of Abbreviations

AD: Alzheimer’s disease
ACh: Acetylcholine
AChE: Acetylcholinesterase
BACE: Beta- Secretase
CNS: Central Nervous System
FDA: Food and Drug Administration
RAGE: Receptor for Advance Glycation End Product
Aβ: Amyloid- Beta
NDs: Neurological disorders
PD: Parkinson disease
PDB: Protein Data Bank
LGA: Lamarckian Genetic Algorithm
APP: Amyloid Precursor Protein
Ki: Inhibition constant
IC50: Inhibitory Concentration
Km: Michaelis-Menten constant
ΔG: Free energy of binding
BBB: Blood Brain Barrier
Vnc: Vincamine
Ajm: Ajmalicine
Eme: Emetine
AChI: Acetylcholine Iodide
Å: Angstrom
HIA: Human Intestinal Absorption
HBA: Hydrogen Bond Acceptor
HBD: Hydrogen Bond Donor
µM: Micromole
nM: NanoMol
Abstract

Alzheimer's disease is a progressive and irreversible neurodegenerative disease and the most common cause of dementia in the elderly population. Its etiology is still not clear. One of the foremost pathological features is the extracellular deposits of β-amyloid (Aβ) peptides in senile plaques. Aβ cascade-inflammatory assumption has been elucidated to taken forward in search of treatment for AD. B-amyloid cascade formation along with several cytoskeleton abnormalities succeeding to hyperphosphorylation of microtubule-associated tau protein in neurons leads to the elicitation of several neurotoxic incidents. As an outcome of these phenomena, steady growth of dementia in aged population is becoming ubiquitous in both developed and developing countries. Thus, the key aspiration is to endow with stable daily life functionality to the person suffering from dementia and to cut down or slower the symptoms of disease leading to disruptive behaviours. In sight of this, the proteins amyloid-beta, BACE-1, RAGE and AChE are being aimed for the treatment of AD successfully. Currently, there are several medicines for the treatment of AD under survey like Galangin, Cymserine, Tolserine, Bsnorcymserine and Huperzine A.

The thesis emphasizes clinical and neurobiological aspects of AD. The purpose of this study is to provide a brief introduction of AD along with the related concept of beta-secretase, beta amyloid and neurotransmitter in the progression of disease.

The present study clarifies the molecular interactions of human BACE1 with novel natural ligands and also with the well-known ligand 2, 2, 4-trihydroxychalcone and Galangin for comparison. The study of enzyme- ligands interaction is interesting, thus description of ligands binding to the active site of target molecule could be beneficial for
better understanding the mechanism of the ligand interaction with the target molecule. Lipinski rule of five and docking studies were performed between ligands and enzyme using ‘Autodock4.2’. It was found that hydrogen bond interactions play a significant role in the accurate positioning of ligands within the ‘active site’ of BACE1 to permit effective docking. Such information may aid to propose the BACE1 -inhibitors and is estimated to aid in the safe medical use of ligands. Selected ligands of BACE1 also inhibit the aggregated form of beta- amyloid peptide. The aggregation of amyloid peptides Aβ_{1-42} may be responsible for development of AD. For the validation of enzyme –ligands results, we considered 2, 2, 4-trihydroxychalconeas and Galangin as a positive controls. This study confirm that ligands are more competent inhibitors of human BACE1 as compared to positive control with reference to ΔG values.

The interaction of Aβ and RAGE at the BBB causes the reduction of cerebral blood flow by enhancing the secretion of endothelin-1 to induce vasoconstriction. In this process, RAGE is responsible for the influx of Aβ into the brain through BBB. Therefore, we predict the interaction potential of the natural compounds with the enzymes concerned in the treatment of AD. We have selected 3 compounds that show the higher efficiency to bind with Aβ (Vincamine: -5.45 Kcal/Mol, Ajmalicine: -6.66 Kcal/Mol, Emetine: -6.99 Kcal/Mol and a positive control Curcumin: -3.61 Kcal/Mol) on the basis of their binding energy obtained from docked conformation. All the compounds absorbed by the human body pass through the BBB and have high binding energies as compared to positive control curcumin. It was observed that when Vincamine, Ajmalicine and Emetine bind with protein, the main functioning of protein decreases. These compounds are also able to
inhibit the binding process of Aβ and RAGE. The inhibition of Aβ and its interaction with RAGE may be valuable in proposing the next round of compounds for clinical trials.

Acetylcholinesterase (EC 3.1.1.7) is an enzyme that belongs to the superfamily of α/β-hydrolase fold proteins. AChE inhibitors seize the breakdown of acetylcholine which forms the main therapeutic strategy for AD. Inhibition of AChE was the first approach to treat AD. AChE is responsible for the termination of cholinergic transmission, that is, the enzymatic breakdown of ACh. Here, Vincamine showed the inhibitory activity against AChE enzyme. The free energy of binding for the ‘Vincamine-AChE CAS interaction’ and ‘AChI-AChE CAS interaction’ were found to be -10.77 kcal/mol and -3.94 kcal/mol respectively. Computational studies showed the competitive inhibition. Vincamine was found to interact with AChE enzyme at the same locus as that of substrate acetylcholine iodide (AChI). Interestingly, amino acid residues, Trp86, Gly120, Gly121, Gly122, Tyr133, Glu202, Ser203, Phe297 and His447 of AChE were found to be common for ‘Vincamine–AChE interaction’ as well as ‘AChI–AChE interaction’. Thus the present computational study concludes that Vincamine can be a promising inhibitor of AChE for the treatment of Alzheimer disease.

The inhibition kinetic studies were attempted to explain how inhibitor acts on enzyme and influence the progress of reaction. The kinetic constants Km and Ki are critical to understand mode of inhibition which modifies the metabolism of an organism. In this study, enzyme inhibition kinetics of Vincamine on human AChE was explored. AChE is responsible for the termination of cholinergic transmission, that is, the enzymatic breakdown of ACh. Here, Vincamine showed dose dependent inhibitory activity against
AChE enzyme with IC$_{50}$ value of 239 µM. The Michaelis-Menten constant (Km) was preliminary determined by Lineweaver-Burk plot which was found to be 0.598mM and same was further confirmed by Eadie- Hofstee and Hanes plots. The obtained value of Ki from Dixon plot was found to be 239µM and, the same was also confirmed by secondary plots. Line Weaver–Burk reciprocal plot showed that inhibitor was a competitive inhibitor of AChE where the value of Km increases with the increase in the concentration of inhibitor without affecting the Vmax. This study can be used to understand the mechanism of inhibition of AChE by Vincamine for the treatment of Alzheimer disease.

Henceforth, in current study the efficacy of selected natural compounds is checked for their anti Alzheimer potential by using different targets of this disease employing in silico studies which has been subsequently validated on wet lab platform. The proposed natural compounds would be highly potent for the treatment of Alzheimer’s disease by inhibiting the various targets which are actively participating in the development of Alzheimer’s disease. Combination of computational and inhibition kinetics studies could serve as an important initial step towards development of more potent compound, Vincamine to act as a better and clinically effective drug molecule.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>(i)</td>
</tr>
<tr>
<td>Certificate/s (Supervisor)</td>
<td>(ii)</td>
</tr>
<tr>
<td>Certificate/s (Co-Supervisor)</td>
<td>(iii)</td>
</tr>
<tr>
<td>Declaration</td>
<td>(iv)</td>
</tr>
<tr>
<td>Copyright Transfer Certificate</td>
<td>(v)</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>(vi) - (viii)</td>
</tr>
<tr>
<td>List of Tables</td>
<td>(ix)</td>
</tr>
<tr>
<td>List of Figures</td>
<td>(x) – (xi)</td>
</tr>
<tr>
<td>List of Symbols and Abbreviations, Nomenclature etc</td>
<td>(xii)</td>
</tr>
<tr>
<td>Abstract</td>
<td>(xiii)-(xvi)</td>
</tr>
</tbody>
</table>

CHAPTER-1 Introduction and review of literature

1.1 Alzheimer's disease 1-3
1.2 Stages of Alzheimer's 4
1.3 Aggregation of beta amyloid 4-6
1.4 Beta-site Amyloid Precursor Protein Cleaving Enzyme 1 7-8
1.5 Amyloidogenic pathway in Alzheimer 8-9
1.6 Role of RAGE in Alzheimer’s disease 9-10
1.7 Neurotransmitters in Alzheimer’s disease 10
 1.7.1 Acetylcholinesterase 10-12
 1.7.2 Distribution of Acetylcholinesterase 12
 1.7.3 Mechanism of AChE in Alzheimer’s disease 12-13
1.8 Treatment of AD 14-15
1.9 New therapeutic candidates for the treatment of Alzheimer’s disease 15
 1.9.1 Resveratrol 15-16
 1.9.2 Bisnorcymserine 16
 1.9.3 Huperzine A 16
CHAPTER-2 Screening of natural compounds to observe their potential against amyloid beta production and aggregation using molecular docking approach

2.1 Introduction

2.2 Materials and Methods
 2.2.1 Preparation of Receptor- Protein Structures
 2.2.2 Preparation of Ligand Structure
 2.2.3 Lipinski's Rule of Five
 2.2.4 Molecular Interaction Studies

2.3 Results and Discussion
 2.3.1 Interaction Study of Single and Aggregated Amyloid Beta Peptide with Selected Ligands

2.4 Conclusion
CHAPTER-3 *In-silico* screening of natural compounds to observe their amyloid beta clearance potential

3.1 Introduction 39-40

3.2 Materials and Methods 40

3.2.1 Preparation of receptor-protein structures 40-41

3.2.2 Preparation of ligand structure 41-42

3.2.3 Molecular interaction study 42-43

3.2.4 Protein-Protein Interaction analysis 43

3.3 Results and Discussion 43-47

3.3.1 Protein-protein interaction study 48-52

3.3.2 Comparison of Vnc, Ajm and Eme with positive control Curcumin 52-53

3.4 Conclusion 53

CHAPTER-4 To observe the potency of selected natural compounds against neurotransmitter system using enzoinformatics study

4.1 introduction 54-55

4.2 Materials and methods 55

4.2.1 Protein preparation 55

4.2.2 Ligand preparation 56

4.2.3 Molecular properties and drug likeness 56

4.2.4 Molecular docking and visualization 56-57

4.3 Results and discussion 57

4.3.1 Blood–brain barrier 57-58

4.3.2 Human intestinal absorption 58

4.3.3 Molecular Interaction Study 58-62

4.4 Conclusion 62

CHAPTER-5 To validate the anti-Alzheimer potential of selected natural compounds in *in-vitro* system

5.1 Introduction 63-64

5.2 Materials and methods 64
5.2.1 Chemical used for enzyme assay 64
5.2.2 Determination of AChE activity 64
5.2.3 *In vitro* inhibition studies on AChE 64-65
5.2.4 Kinetic Assay 65
5.3 Results and discussion 65-71
5.4 Conclusion 71
Bibliography 72-98
List of Publications 99