LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Typical metal alloys being used for spacecraft construction</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Space Shuttle illumination due to atomic oxygen interaction</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Electromagnetic spectrum and diverse radiations</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Different atmospheric regions with respect to the altitude</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Atmospheric molecule concentration vs. altitude</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Post-flight picture displays failure of thin film samples from the MISSE-4</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>AO flux as a fraction of solar activity</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Typical mechanism of AO erosion in polymeric materials</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Variation in the plasma density with respect to the altitude</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Space Radiation Environment</td>
<td>36</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Radiation interaction with materials</td>
<td>39</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Molecular structure of PEI polymer</td>
<td>51</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Molecular structure of PBI polymer</td>
<td>53</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Schematic representation of acid functionalization of MWCNTs</td>
<td>79</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Plasma formation in the plasma chamber</td>
<td>80</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Schematic representation of Injection molding machine</td>
<td>83</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>FTIR spectrum of pristine MWCNTs</td>
<td>92</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>FTIR spectrum of acid functionalized MWCNTs</td>
<td>92</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>FTIR spectrum of dual functionalized MWCNTs</td>
<td>93</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>FTIR spectrum of PEI/MWCNTs nanocomposite</td>
<td>95</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>XPS spectrum of PEI and its nanocomposites</td>
<td>98</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Deconvoluted core XPS spectrum of PEI nanocomposites N1s; O1s and C1s</td>
<td>99</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>(a) Oxygen/Carbon ratio; (b) Nitrogen/carbon ratio</td>
<td>100</td>
</tr>
<tr>
<td>Figure 4.8(a)</td>
<td>SEM image of dispersion of pristine MWCNT 0.5 wt. % in PEI matrix</td>
<td>102</td>
</tr>
<tr>
<td>Figure 4.8(b)</td>
<td>SEM image of 0.5 wt. % COOH-MWCNT/PEI nanocomposite</td>
<td>102</td>
</tr>
<tr>
<td>Figure 4.8(c)</td>
<td>SEM image of 2 wt. % COOH-MWCNT/PEI nanocomposite</td>
<td>103</td>
</tr>
<tr>
<td>Figure 4.8(d)</td>
<td>SEM image of 0.5 wt. % dual-MWCNT/PEI nanocomposite</td>
<td>103</td>
</tr>
</tbody>
</table>
Figure 4.8(e) SEM image of 2 wt. % dual-MWCNT/PEI nanocomposite.

Figure 4.9(a) TEM image of pristine-MWCNT/PEI nanocomposite.

Figure 4.9(b) TEM image of COOH-MWCNT/PEI nanocomposite.

Figure 4.9(c) TEM image of dual-MWCNT/PEI nanocomposite.

Figure 4.10 Theoretical and experimental values of modulus of PEI/Dual-MWCNTs nanocomposite.

Figure 4.11 Complex viscosity vs. frequency for PEI/MWCNTs nanocomposite.

Figure 4.12 Steady shear viscosity as a function of shear rate for PEI/MWCNTs nanocomposites.

Figure 4.13 Shear stress as a function of shear rate for PEI/MWCNTs nanocomposite.

Figure 4.14 Storage (G’) and loss modulus (G”) as a function of frequency.

Figure 4.15 Modified Cole-Cole plot G’ vs G” of PEI/MWCNTs nanocomposites.

Figure 4.16 (a) Typical DSC thermograms of PEI (b) PEI/MWCNTs nanocomposites.

Figure 4.17 TGA graphs of PEI/MWCNT nanocomposite.

Figure 4.18 Schematic representation of IPDT characteristics.

Figure 4.19(a) Coats-Red fern graphical analysis for unfilled PEI.

Figure 4.19(b) Coats-Red fern graphical analysis for 0.5 wt. % - chemically treated MWCNT/PEI.

Figure 4.19(c) Coats-Red fern graphical analysis for 0.5 wt. % -dual treated MWCNT.

Figure 4.19(d) Coats-Red fern graphical analysis for 2 wt. % -chemically treated MWCNT.

Figure 4.19(e) Coats-Red fern graphical analysis for 2 wt. % -dual treated MWCNT.

Figure 4.20(a) Dielectric constant as a function of frequency for PEI and its nanocomposite.

Figure 4.20(b) Dielectric loss as a function of frequency for PEI and its nanocomposite.

Figure 4.20(c) Dissipation factor (Tan δ) vs. frequency for PEI and its nanocomposite.

Figure 4.21 FTIR spectrum of unfilled PBI.

Figure 4.22 FTIR spectrum of COOH-MWCNTs/PBI nanocomposite.

Figure 4.23 FTIR spectrum of Dual-MWCNTs/PBI nanocomposite.

Figure 4.24(a) TEM image of PEI/pristine –MWCNTs nanocomposite.

Figure 4.24(b) TEM image of PEI/COOH –MWCNTs nanocomposite.

Figure 4.24(c) TEM image of PEI/dual –MWCNTs nanocomposite.
Figure 4.25(a) DSC thermogram of unfilled PBI ... 153
Figure 4.25(b) Typical DSC thermogram of PBI/MWCNTs nanocomposite 154
Figure 4.26 TGA graphs of unfilled PBI and PBI/MWCNTs nanocomposite 156
Figure 4.27(a) Dielectric constant as a function of frequency for PBI and its nanocomposite........... 157
Figure 4.27(b) Dielectric loss as a function of frequency for PBI and its nanocomposite.............. 158
Figure 4.27(c) Dissipating factor as a function of frequency for PBI and its nanocomposite........... 158
Figure 5.1 Mass loss for AO exposed PEI and its nanocomposites ... 166
Figure 5.2 Mass loss for LEO exposed PEI and its nanocomposites .. 166
Figure 5.3 Mass loss for AO exposed PBI and its nanocomposites ... 167
Figure 5.4 Mass loss for LEO exposed PBI and its nanocomposites .. 167
Figure 5.5 Erosion yield for AO exposed PEI and its nanocomposites 173
Figure 5.6 Erosion yield for LEO exposed PEI and its nanocomposites 173
Figure 5.7 Erosion yield for AO exposed PBI and its nanocomposites 174
Figure 5.8 Erosion yield for LEO exposed PBI and its nanocomposites 174
Figure 5.9 FTIR spectrum of unexposed and LEO exposed unfilled PEI 176
Figure 5.10 FTIR spectrum of unexposed and LEO exposed COOH-MWCNTs/PEI nanocomposite... 176
Figure 5.11 FTIR spectrum of unexposed and LEO exposed dual-MWCNTs/PEI nanocomposite...... 177
Figure 5.12 FTIR spectrum of unexposed and LEO exposed unfilled PBI 177
Figure 5.13 FTIR spectrum of unexposed and LEO exposed COOH-MWCNTs/PBI nanocomposite... 178
Figure 5.14 FTIR spectrum of unexposed and LEO exposed dual-MWCNTs/PBI nanocomposite...... 179
Figure 5.15 Change in the tensile strength of AO exposed PEI and its nanocomposite............... 183
Figure 5.16 Change in the tensile strength of LEO exposed PEI and its nanocomposite............... 183
Figure 5.17 Change in the tensile modulus of AO exposed PEI and its nanocomposite............... 184
Figure 5.18 Change in the tensile modulus of LEO exposed PEI and its nanocomposite............... 184
Figure 5.19 Change in the tensile strength of AO exposed PBI and its nanocomposites............... 185
Figure 5.20 Change in the tensile strength of LEO exposed PBI and its nanocomposites............... 185
Figure 5.21 Change in the tensile modulus of AO exposed PBI and its nanocomposite............... 186
Figure 5.22 Change in the tensile modulus of LEO exposed PBI and its nanocomposite............... 186
Figure 5.23 Mechanisms for irradiation effect on polymers ... 189
Figure 5.24 Change in the tensile strength of gamma irradiated PEI and its nanocomposite 191
Figure 5.25 Change in the tensile modulus of gamma irradiated PEI and its nanocomposite 192
Figure 5.26 Change in the elongation break % of gamma irradiated PEI and its nanocomposite 192
Figure 5.27 Change in the tensile strength of gamma irradiated PBI and its nanocomposite 193
Figure 5.28 Change in the tensile modulus of gamma irradiated PBI and its nanocomposite 193
Figure 5.29 Change in the elongation break % of gamma irradiated PBI and its nanocomposite 194
Figure 5.30 Change in the tensile strength of Electron beam irradiated PEI and its nanocomposite ... 194
Figure 5.31 Change in the tensile modulus of Electron beam irradiated PEI and its nanocomposite ... 195
Figure 5.32 Change in the Eb % of Electron beam irradiated PEI and its nanocomposite 195
Figure 5.33 Change in the tensile strength of Electron beam irradiated PBI and its nanocomposite ... 196
Figure 5.34 Change in the tensile modulus of Electron beam irradiated PBI and its nanocomposite ... 196
Figure 5.35 Change in the Eb % of Electron beam irradiated PBI and its nanocomposite 197
Figure 5.36 Change in the tensile strength of thermal cycle tested PEI and its nanocomposite 200
Figure 5.37 Change in the tensile modulus of thermal cycle tested PEI and its nanocomposite 200
Figure 5.38 Change in the tensile strength of thermal cycle tested PBI and its nanocomposite 201
Figure 5.39 Change in the tensile modulus of thermal cycle tested PBI and its nanocomposite 201
Figure 6.1(a) Characteristic interaction plot for % change in tensile modulus of the composite 214
Figure 6.1(b) Characteristic interaction plot for Tg of the PEI/ dual-MWCNTs nanocomposites 216
Figure 6.2(a) Contour plot for tensile strength of PEI/COOH-MWCNTs nanocomposite 217
Figure 6.2(b) 3-D Surface plot for tensile strength of PEI/COOH-MWCNTs nanocomposite 217
Figure 6.3(a) Contour plot for tensile strength of PEI/dual-MWCNTs nanocomposite 218
Figure 6.3(b) 3-Dimensional Surface plot for tensile strength of PEI/dual-MWCNTs nanocomposite 219
Figure 6.4(a) Overlayed Contour plot for the PEI/COOH-MWCNTs nanocomposite 220
Figure 6.4(b) Overlayed Contour plot for the PEI/dual-MWCNTs nanocomposite 221