Chapter 5

Ricci almost solitons on generalized Sasakian-space-forms

5.1 Introduction

In this chapter we propose the study of RAS structure on $GSSF$. In section 5.2 we have presented some essential background materials to dig into our results. Section 5.3 captures the study of RAS on our proposed structure. It is proved that in this setup the manifold becomes Einstein, Ricci symmetric and Ricci semisymmetric respectively. Finally in section 5.4 we have introduced the study of η-RAS and proved that if we choose the connection to be semisymmetric, then the structure turns out to be pseudo η-Einstein with respect to ∇.

The contents of this chapter consists of the papers ([72], [87]).
5.2 Preliminaries

Definition 5.2.1. A vector field V is said to be a conformal Killing vector field [126] if it satisfies

$$(\mathcal{L}_V g)(U,V) = 2\rho g(U,V)$$

(5.2.1)

for all $U, V \in \chi(M^n(f_1, f_2, f_3))$, where $\rho \in C^\infty(M^n)$.
In particular, if ρ is constant then V is called homothetic and if $\rho = 0$ then V is called isometric as well as Killing vector field.

We also recall the following:

Definition 5.2.2. A GSSF $M^n(f_1, f_2, f_3)$ is called η-Ricci recurrent [43] if the following relation holds:

$$(\nabla_X S)(\phi Y, \phi Z) = \alpha(X) S(Y, Z),$$

(5.2.2)

where α is a no-where vanishing 1-form.
In particular, if α vanishes identically then $M^n(f_1, f_2, f_3)$ is called η-Ricci parallel.

Theorem 5.2.1. [43] If a GSSF $M^n(f_1, f_2, f_3)$ is η-Ricci recurrent then $(n-1)f_1 + 3f_2 - f_3$ can never be a non-zero constant.

Theorem 5.2.2. [43] If a GSSF $M^n(f_1, f_2, f_3)$ is η-Ricci parallel then $(n-1)f_1 + 3f_2 - f_3$ is constant.

There are so many weaker version Ricci symmetry such as Ricci recurrent manifold [110], Ricci semisymmetric manifold [140] etc. It is known that every Ricci symmetric manifold is Ricci semisymmetric but not conversely [140]. However, in this paper it is proved that if (g, V, λ) is a RAS on a GSSF $M^n(f_1, f_2, f_3)$, where V is conformal Killing vector field then $M^n(f_1, f_2, f_3)$ is Ricci semisymmetric if and only if it is Ricci symmetric.

In 1970 Pokhariyal and Mishra [116] were introduced new tensor fields, called W_2
and E tensor fields, in a Riemannian manifold and studied their properties. According to them a W_2-curvature tensor on a $GSSF$ $M^n(f_1, f_2, f_3)$, $n > 3$, is defined by [116]

$$W_2(X,Y)Z = R(X,Y)Z + \frac{1}{(n-1)} [g(X,Z)QY - g(Y,Z)QX], \quad (5.2.3)$$

where Q is the Ricci-operator. A $GSSF$ $M^n(f_1, f_2, f_3)$ is called W_2-flat if $W_2(X,Y)Z$ vanishes identically for all X, Y and $Z \in \chi(M^n)$.

5.3 Ricci almost solitons with conformal Killing vector field

This section deals with the study of of $GSSF$ whose metric is RAS with a conformal Killing vector field and we prove the following:

Theorem 5.3.1. Let (g, V, λ) be a RAS on a $GSSF$ $M^n(f_1, f_2, f_3)$. If V is conformal Killing vector field then the followings are equivalent:

(i) $M^n(f_1, f_2, f_3)$ is Einstein.
(ii) $\lambda + \rho$ is constant though λ and ρ are smooth functions.
(iii) $M^n(f_1, f_2, f_3)$ is Ricci symmetric.
(iv) $M^n(f_1, f_2, f_3)$ is Ricci semisymmetric.

Proof. Since (g, V, λ) is a RAS on a $GSSF$ $M^n(f_1, f_2, f_3)$ with V is conformal Killing vector field then by virtue of (5.2.1) we obtain from (2) that

$$S(X,Y) = - (\lambda + \rho) g(X,Y), \quad (5.3.1)$$

which implies that the manifold under consideration is Einstein, i.e. (i) holds and hence $\lambda + \rho$ is always constant by Bianchi’s identity, though λ and ρ are smooth functions, i.e. (ii) holds.
As $M^n(f_1, f_2, f_3)$ is Einstein, its Ricci tensor is parallel, i.e. $M^n(f_1, f_2, f_3)$ is Ricci symmetric, which implies (iii). Again in [59] it is proved that if the Ricci tensor of a GSSF $M^n(f_1, f_2, f_3)$ with $f_1 \neq f_3$ is parallel then $M^n(f_1, f_2, f_3)$ is Einstein, i.e. (iii) implies (i).

Now for any $X, Y, Z, U \in \chi(M^n(f_1, f_2, f_3))$, we have

$$
(R(X, Y) \cdot S)(Z, U) = -S(R(X, Y)Z, U) - S(Z, R(X, Y)U).
$$

Using (5.3.1) in (5.3.2), we obtain

$$
(R(X, Y) \cdot S)(Z, U) = (\lambda + \rho)[g(R(X, Y)Z, U) + g(Z, R(X, Y)U)] = 0,
$$

which implies that the manifold under consideration is Ricci semisymmetric, i.e. (iv) holds.

Now from (4.2.3) and (5.3.1), we get

$$
-(\lambda + \rho) = (n - 1)f_1 + 3f_2 - f_3,
$$

$$
3f_2 + (n - 2)f_3 = 0.
$$

From (5.3.4) and (5.4.1) we obtain $\lambda = -[\rho + (n - 1)(f_1 - f_3)]$.

This leads to the following:

Theorem 5.3.2. In a GSSF $M^n(f_1, f_2, f_3)$, a RAS (g, V, λ) with V is a conformal Killing vector field is (i) shrinking for $\rho + (n - 1)(f_1 - f_3) > 0$, (ii) steady for $\rho + (n - 1)(f_1 - f_3) = 0$, and (iii) expanding for $\rho + (n - 1)(f_1 - f_3) < 0$ respectively.

Corollary 5.3.1. A RAS (g, V, λ), where V is Killing vector field in a GSSF, is shrinking, steady and expanding according as $(f_1 - f_3) > 0$, $= 0$ and < 0, respectively.

Corollary 5.3.2. A RAS (g, V, λ), where V is a Killing vector field in a Sasakian-space-form, is always shrinking.

In connection to the study of W_2-curvature tensor field in a GSSF, Hui and Sarkar found [83]
Theorem 5.3.3. [83] Every GSSF $M^n(f_1, f_2, f_3)$ is W_2-flat if and only if $3f_2 + (n - 2)f_3 = 0$.

So by virtue of (5.4.1) and Theorem 5.3.3, we can state the following:

Theorem 5.3.4. If (g, V, λ) is a RAS on a GSSF $M^n(f_1, f_2, f_3)$ such that the potential vector field V is conformal Killing, then $M^n(f_1, f_2, f_3)$ is W_2-flat.

5.4 η-Ricci almost solitons

This section deals with the study of η-RAS on GSSF.

Let $M^n(f_1, f_2, f_3)$ be a GSSF. From (9) and (4.2.1), we get

\[
(L_\xi g)(X,Y) = \frac{d}{dt}g(L_\xi X,Y) + g(L_\xi X,\nabla_Y \xi) - g(X,\nabla_Y \xi) = -(f_1 - f_3)g(\phi X,Y) - (f_1 - f_3)g(X,\phi Y) = 0.
\] (5.4.1)

From (4.2.3) and (5.4.1), we obtain

\[
(L_\xi g)(X,Y) + 2S(X,Y) + 2\bar{\lambda}g(X,Y) + 2\bar{\mu}g(Y,X) = 0
\] (5.4.2)

for all $X, Y, Z \in \chi(M^n(f_1, f_2, f_3))$, where $\bar{\lambda} = -(n - 1)f_1 + 3f_2 - f_3$ and $\bar{\mu} = 3f_2 + (n - 2)f_3$.

If $M^n(f_1, f_2, f_3)$ is η-Ricci recurrent then from Theorem 5.2.1 it follows that $(n - 1)f_1 + 3f_2 - f_3$ can never be a non-zero constant, i.e. $\bar{\lambda}$ is a smooth function as f_1, f_2 and f_3 are smooth functions. Thus we can state the following:
Theorem 5.4.1. If a GSSF $M^n(f_1, f_2, f_3)$ is η-Ricci recurrent, then $(g, \xi, \bar{\lambda}, \bar{\mu})$ yields an η-RAS, provided $\bar{\mu}$ is a non-constant smooth function.

Again if $M^n(f_1, f_2, f_3)$ is η-Ricci parallel then from Theorem 5.2.2 it follows that $(n - 1)f_1 + 3f_2 - f_3$ is constant, i.e. $\bar{\lambda}$ is a constant. Thus we can state the following:

Theorem 5.4.2. If a GSSF $M^n(f_1, f_2, f_3)$ is η-Ricci parallel, then $(g, \xi, \bar{\lambda}, \bar{\mu})$ yields an η-RS, provided $\bar{\mu}$ is a constant.

Since in a Sasakian-space-form, $\bar{\lambda}$ and $(f_1 - f_3)$ are always constants, we can state the following:

Corollary 5.4.1. In a Sasakian-space-form, $(g, \xi, \bar{\lambda}, \bar{\mu})$ yields an η-RS.

Theorem 5.4.3. [83] Every GSSF $M^n(f_1, f_2, f_3)$ is W_2-flat if and only if $3f_2 + (n - 2)f_3 = 0$.

Theorem 5.4.4. [83] A GSSF $M^n(f_1, f_2, f_3)$ is W_2-flat if and only if it is projectively flat.

So, if the GSSF $M^n(f_1, f_2, f_3)$ is W_2-flat (or projectively flat) then from Theorem 5.4.3 and Theorem 5.4.4, we get $\bar{\mu} = 3f_2 + (n - 2)f_3 = 0$ and hence we can state the following:

Theorem 5.4.5. In a W_2-flat (or projectively flat) GSSF $M^n(f_1, f_2, f_3)$, there are no η-RAS as well as η-RS.

By virtue of Theorem 5.2.1, Theorem 5.4.3 and Theorem 5.4.4 we can state the following:

Theorem 5.4.6. If a W_2-flat (or projectively flat) GSSF $M^n(f_1, f_2, f_3)$ is η-Ricci recurrent, then $(g, \xi, \bar{\lambda})$ yields an RAS.

Also in view of Theorem 5.2.2, Theorem 5.4.3 and Theorem 5.4.4 we can state the following:
Theorem 5.4.7. If a W_2-flat (or projectively flat) GSSF $M^n(f_1, f_2, f_3)$ is η-Ricci parallel, then (g, ξ, λ) yields an RS.

Let (g, ξ, λ, μ) be an η-RAS on a GSSF $M^n(f_1, f_2, f_3)$ with respect to ∇^s. Then we have

$$\left(\mathcal{L}_\xi^s g\right)(Y, Z) + 2S^s(Y, Z) + 2\lambda g(Y, Z) + 2\mu\eta(Y)\eta(Z) = 0.$$ \hspace{1cm} (5.4.3)

Now we have

$$\left(\mathcal{L}_\xi^s g\right)(Y, Z) = g(\nabla^s_Y \xi, Z) + g(Y, \nabla^s_Z \xi)$$ \hspace{1cm} (5.4.4)

$$= g(\nabla_Y \xi + Y - \eta(Y)\xi, Z) + g(Y, \nabla_Z \xi + Z - \eta(Z)\xi)$$

$$= 2[g(Y, Z) - \eta(Y)\eta(Z)].$$

Using (48) and (5.4.4) in (5.4.3), we get

$$S(Y, Z) = [a - \lambda - 1]g(Y, Z) - (\mu - 1)\eta(Y)\eta(Z) + (n - 2)\alpha(Y, Z),$$ \hspace{1cm} (5.4.5)

which implies that the manifold under consideration is pseudo η-Einstein [122].

This leads to the following:

Theorem 5.4.8. If (g, ξ, λ, μ) is an η-RAS on a GSSF $M^n(f_1, f_2, f_3)$ with respect to ∇^s then M is pseudo η-Einstein.

We now consider (g, V, λ, μ) is an η-RAS on a GSSF $M^n(f_1, f_2, f_3)$ with respect to ∇^s. Then we have

$$\left(\mathcal{L}_V^s g\right)(Y, Z) + 2S^s(Y, Z) + 2\lambda g(Y, Z) + 2\mu\eta(Y)\eta(Z) = 0.$$ \hspace{1cm} (5.4.6)

By virtue of (40), we have

$$\left(\mathcal{L}_V^s g\right)(Y, Z) = g(\nabla^s_Y V, Z) + g(Y, \nabla^s_Z V).$$ \hspace{1cm} (5.4.7)
Using (48) and (5.4.7) in (5.4.6), we get

\[
(\mathcal{L}_V g)(Y, Z) + 2 S(Y, Z) + 2 \lambda g(Y, Z) + 2 \mu \eta(Y) \eta(Z)
\]

\[+ 2 \{\eta(V) - a\} g(Y, Z) - 2((n - 2)) \alpha(Y, Z)
\]

\[- [\eta(Z) g(Y, V) + \eta(Y) g(Z, V)] = 0.
\]

If \((g, V, \lambda, \mu)\) is an \(\eta\)-RAS on a GSSF \(M^n(f_1, f_2, f_3)\) with respect to \(\nabla\) then (4) holds. Thus from (4) and (5.4.8), we can state the following:

Theorem 5.4.9. An \(\eta\)-RAS \((g, V, \lambda, \mu)\) on a GSSF \(M^n(f_1, f_2, f_3)\) is invariant under \(\nabla^*\) if and only if the relation

\[2 \{\eta(V) - a\} g(Y, Z) - 2((n - 2)) \alpha(Y, Z) - [\eta(Z) g(Y, V) + \eta(Y) g(Z, V)] = 0
\]

holds for arbitrary vector fields \(Y\) and \(Z\).