Chapter 3

Ricci solitons on β-Kenmotsu manifolds

3.1 Introduction

In this chapter we have studied RSs on a more generalized class of Kenmotsu manifolds, namely β-Kenmotsu manifolds. After presenting preliminary facts in section 3.2, we have studied RAS on concircular Ricci pseudosymmetric β-Kenmotsu manifolds in section 3.3. For a Ricci pseudosymmetric manifold, there is a naturally defined function denoted by L_S. We have found the critical value of this function imposing RAS structure on the manifold under consideration and characterize the RAS according to this critical value. We have also constructed an explicit example to verify our results. Next in section 3.4 we have applied D-homothetic deformation on our adapted RS structure and observed that the said structure transforms into an η-RS structure. In section 3.5 we have studied RAS on β-Kenmotsu manifold with respect to ∇^* and proved that the structure remains invariant with respect to ∇ for a non-regular β-Kenmotsu manifold. Finally, we have proved that if the metric of a β-Kenmotsu
The contents of this chapter consists of the papers ([75], [35]).

3.2 Preliminaries

In a β-Kenmotsu manifold, the following relations hold ([90], [108], [124]):

\[
(\nabla_X \eta)(Y) = \beta [g(X,Y) - \eta(X)\eta(Y)], \quad (3.2.1)
\]

\[
R(X,Y)\xi = -\beta^2 [\eta(Y)X - \eta(X)Y]
+ (X\beta)\{Y - \eta(Y)\xi\} - (Y\beta)\{X - \eta(X)\xi\}, \quad (3.2.2)
\]

\[
R(\xi,X)Y = [\beta^2 + (\xi\beta)][\eta(Y)X - g(X,Y)\xi], \quad (3.2.3)
\]

\[
\eta(R(X,Y)Z) = \beta^2 [\eta(Y)g(X,Z) - \eta(X)g(Y,Z)]
- (X\beta)\{g(Y,Z) - \eta(Y)\eta(Z)\}
+ (Y\beta)\{g(X,Z) - \eta(Z)\eta(X)\}, \quad (3.2.4)
\]

\[
S(X,\xi) = -(n-1)\beta^2 + (\xi\beta)\eta(X) - (n-1-1)(X\beta), \quad (3.2.5)
\]

for all $X, Y, Z \in \chi(M)$.

Let (g, ξ, λ) be a RAS on a β-Kenmotsu manifold $M^n(\phi, \xi, \eta, g)$. Then from (10), we get

\[
(\mathcal{L}_\xi g)(X,Y) = g(\nabla_X \xi, Y) + g(X, \nabla_Y \xi)
\]
\[
\begin{align*}
&= \beta[g(X - \eta(X)\xi, Y) + g(X, Y - \eta(Y)\xi)] \\
&= 2\beta[g(X, Y) - \eta(X)\eta(Y)],
\end{align*}
\]

i.e.

\[
\frac{1}{2}(\mathcal{L}_\xi g)(X, Y) = \beta\{g(X, Y) - \eta(X)\eta(Y)\}. \tag{3.2.6}
\]

From (2) and (3.2.6) we have

\[
S(X, Y) = -(\beta + \lambda)g(X, Y) + \beta\eta(X)\eta(Y), \tag{3.2.7}
\]

which yields

\[
QX = -(\beta + \lambda)X + \beta\eta(X)\xi, \tag{3.2.8}
\]

\[
S(X, \xi) = -\lambda\eta(X), \tag{3.2.9}
\]

\[
r = -n\lambda - (n - 1)\beta, \tag{3.2.10}
\]

where \(Q\) is the Ricci operator and \(r\) is the scalar curvature of \(M^n(\phi, \xi, \eta, g)\).

Let \(M(\phi, \xi, \eta, g)\) be an almost contact metric manifold. Then we have two naturally defined distribution in the tangent bundle \(TM\) of \(M\) as follows [121]

\[
\mathcal{H} = \ker(\eta), \mathcal{V} = \text{span}(\xi).
\]

Then we have \(\mathcal{H} \oplus \mathcal{V} = TM, \mathcal{H} \cap \mathcal{V} = 0\) and \(\mathcal{H} \perp \mathcal{V}\). This decomposition allows one to define the \(\nabla^*\) over an almost contact metric structure. The \(\nabla^*\) on a \(\beta\)-Kenmotsu manifold with respect to \(\nabla\) is defined by [158]

\[
\nabla^*_X Y = \nabla_X Y + \beta[g(X, Y)\xi - \eta(Y)X]. \tag{3.2.11}
\]
If \(R \) and \(R^\ast \), \(S \) and \(S^\ast \) and \(r \) and \(r^\ast \) be the Riemann curvature tensor, Ricci curvature and scalar curvature in a 3-dimensional \(\beta \)-Kenmotsu manifold with respect to \(\nabla \) and \(\nabla^\ast \) respectively, then we have [158]

\[
R^\ast(X,Y)Z = R(X,Y)Z + \beta^2 \{ g(Y,Z)X - g(X,Z)Y \} \\
+ \dot{\beta} \{ g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi \\
+ \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y \},
\]

\[
S^\ast(X,Y) = S(X,Y) + (2\beta^2 + \dot{\beta})g(Y,Z) + \dot{\beta} \eta(Y)\eta(Z),
\]

and

\[
r^\ast = r + 6\beta^2 + 4\dot{\beta}.
\]

for all \(X, Y, Z \in \chi(M) \), where we are assuming \(\dot{\beta} = \xi \beta \). A \(\beta \)-Kenmotsu manifold is said to be regular if \(\beta^2 + \dot{\beta} \neq 0 \). The interesting fact about the connection \(\nabla^\ast \) is that the \(g, \xi \) and \(\eta \) are all parallel with respect to this connection.

3.3 Concircular Ricci pseudosymmetry and Ricci almost solitons

This section deals with the study of RASs on concircular Ricci pseudosymmetric \(\beta \)-Kenmotsu manifolds. A concircular curvature tensor is an interesting invariant of a concircular transformation. A transformation of a \(\beta \)-Kenmotsu manifold \(M^n(\phi, \xi, \eta, g) \), which transforms every geodesic circle of \(M \) into a geodesic circle, is called a concircular transformation [155]. A concircular transformation is always a conformal transformation. Here geodesic circle means a curve in \(M \) whose first curvature is constant and
whose second curvature is identically zero. Thus the geometry of concircular transfor-
mations, that is, the concircular geometry, is a generalization of inversive geometry
in the sense that the change of metric is more general than that induced by a circle
preserving diffeomorphism. The interesting invariant of a concircular transformation
is the concircular curvature tensor ̃\(C\), which is defined by [155]
\[
\tilde{C}(X, Y)Z = R(X, Y)Z - \frac{r}{n(n - 1)} [g(Y, Z)X - g(X, Z)Y],
\]
(3.3.1)
where \(R\) is the curvature tensor and \(r\) is the scalar curvature of the \(\beta\)-Kenmotsu
manifold \(M^n(\phi, \xi, \eta, g)\).

Using (5), (8), (9), (3.2.2) and (3.2.4), we get
\[
\tilde{C}(X, Y)\xi = -[\beta^2 + \frac{r}{n(n - 1)}][\eta(Y)X - \eta(X)Y]
+ (X\beta)\{Y - \eta(Y)\xi\} - (Y\beta)\{X - \eta(X)\xi\},
\]
(3.3.2)
\[
\eta(\tilde{C}(X, Y)U) = [\beta^2 + \frac{r}{n(n - 1)}][\eta(Y)g(X, U) - \eta(X)g(Y, U)]
- (X\beta)\{g(Y, U) - \eta(Y)\eta(U)\}
+ (Y\beta)\{g(X, U) - \eta(X)\eta(U)\}.
\]
(3.3.3)

A \(\beta\)-Kenmotsu manifold \(M^n(\phi, \xi, \eta, g)\), is said to be concircular Ricci pseudosym-
metric if its concircular curvature tensor \(\tilde{C}\) satisfies
\[
(\tilde{C}(X, Y) \cdot S)(Z, U) = L_S Q(g, S)(Z, U; X, Y)
\]
(3.3.4)
on \(U_S = \{x \in M : S \neq \xi g\text{ at } x\}\), where \(L_S\) is some function on \(U_S\).

Let us take a concircular Ricci pseudosymmetric \(\beta\)-Kenmotsu manifold \(M^n(\phi, \xi, \eta, g)\)
whose metric is RAS. Then by virtue of (3.3.4) that
\[
S(\tilde{C}(X,Y)Z,U) + S(Z,\tilde{C}(X,Y)U) = L_S[g(Y,Z)S(X,U) \tag{3.3.5}
\]
\[
-g(X,Z)S(Y,U) + g(Y,U)S(X,Z) - g(X,U)S(Y,Z).
\]

By virtue of (3.2.7) it follows from (3.3.5) that
\[
\eta(\tilde{C}(X,Y)Z)\eta(U) + \eta(Z)\eta(\tilde{C}(X,Y)U) \tag{3.3.6}
\]
\[
= L_S[g(Y,Z)\eta(X)\eta(U) - g(X,Z)\eta(Y)\eta(U)
\]
\[
+ g(Y,U)\eta(X)\eta(Z) - g(X,U)\eta(Y)\eta(Z)].
\]

Setting $Z = \xi$ in (3.3.6) and using (3.3.2) and (3.3.3), we get
\[
[L_S + \beta^2 + \frac{r}{n(n-1)}][\eta(Y)g(X,U) - \eta(X)g(Y,U)] \tag{3.3.7}
\]
\[
- (X\beta)\{g(Y,U) - \eta(Y)\eta(U)\} + (Y\beta)\{g(X,U) - \eta(X)\eta(U)\} = 0.
\]

Putting $Y = \xi$ in (3.3.7) and using (5), (8), (9), and (3.2.10), we get
\[
[L_S + \beta^2 + (\xi\beta) - \frac{\lambda}{n-1} - \frac{\beta}{n}][g(X,U) + \eta(X)\eta(U)] = 0 \tag{3.3.8}
\]
for all vector fields X and U, from which it follows that
\[
L_S = -\beta^2 - (\xi\beta) + \frac{\lambda}{n-1} + \frac{\beta}{n}. \tag{3.3.9}
\]

This leads to the following :

Theorem 3.3.1. If (g,ξ,λ) is a RAS on a concircular Ricci pseudosymmetric β-Kenmotsu manifold $M^n(\phi,\xi,\eta,g)$, then $L_S = -\beta^2 - (\xi\beta) + \frac{\lambda}{n-1} + \frac{\beta}{n}$.
We call this value of L_S as the \textbf{critical value} for L_S.

\textbf{Corollary 3.3.1.} In a concircular Ricci pseudosymmetric Kenmotsu manifold $M^n(\phi, \xi, \eta, g)$, the RAS (g, ξ, λ) is shrinking, steady and expanding according as $L_S + \frac{n-1}{n} < 0$, $L_S + \frac{n-1}{n} = 0$ and $L_S + \frac{n-1}{n} > 0$, respectively.

\textbf{Example 3.3.1} Following [125], let us consider a 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3 : z \neq 0\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^3. Let \{E_1, E_2, E_3\} be a linearly independent global frame on M given by

\[E_1 = z^2 \frac{\partial}{\partial x}, E_2 = z^2 \frac{\partial}{\partial y}, E_3 = \frac{\partial}{\partial z}. \]

Let g be the Riemannian metric defined by $g(E_1, E_2) = g(E_1, E_3) = g(E_2, E_3) = 0$, $g(E_1, E_1) = g(E_2, E_2) = g(E_3, E_3) = 1$. Let η be the 1-form defined by $\eta(U) = g(U, E_3)$ for any $U \in \chi(M)$. Let ϕ be the $(1, 1)$ tensor field defined by $\phi E_1 = -E_2, \phi E_2 = E_1$ and $\phi E_3 = 0$. Then using the linearity of ϕ and g we have

\[\eta(E_3) = 1, \phi^2 U = -U + \eta(U)E_3 \]

and

\[g(\phi U, \phi W) = g(U, W) - \eta(U)\eta(W) \]

for any $U, W \in \chi(M)$. Thus for $E_3 = \xi$, (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Let ∇ be the ∇ of g. Then we have

\[[E_1, E_2] = 0, [E_1, E_3] = -\frac{2}{z} E_1, [E_2, E_3] = -\frac{2}{z} E_2. \]

Using Koszul formula for the Riemannian metric g, we can easily calculate

\[\nabla_{E_1} E_1 = \frac{2}{z} E_3, \nabla_{E_1} E_2 = 0, \nabla_{E_1} E_3 = -\frac{2}{z} E_1, \]
\[\nabla_{E_2}E_1 = 0, \nabla_{E_2}E_2 = \frac{2}{z}E_3, \nabla_{E_2}E_3 = -\frac{2}{z}E_2, \]
\[\nabla_{E_3}E_1 = \nabla_{E_3}E_2 = \nabla_{E_3}E_3 = 0. \]

From the above it can be easily seen that for \(E_3 = \xi, (\phi, \xi, \eta, g) \) is a \(\beta \)-Kenmotsu structure on \(M \). Consequently \(M^3(\phi, \xi, \eta, g) \) is a \(\beta \)-Kenmotsu manifold with \(\beta = -\frac{2}{z} \) [125].

Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor as follows:
\[R(E_1, E_2)E_1 = \frac{4}{z^2}E_2, R(E_1, E_2)E_2 = -\frac{4}{z^2}E_1, \]
\[R(E_1, E_3)E_1 = \frac{6}{z^2}E_3, R(E_1, E_3)E_3 = -\frac{6}{z^2}E_1, \]
\[R(E_2, E_3)E_2 = \frac{6}{z^2}E_3, R(E_2, E_3)E_3 = -\frac{6}{z^2}E_2 \]
and the components which can be obtained from these by the symmetry properties from which, we can easily calculate the non-vanishing components of the Ricci tensor as follows:
\[S(E_1, E_1) = S(E_2, E_2) = -\frac{10}{z^2}, S(E_3, E_3) = -\frac{12}{z^2}. \]

Also the scalar curvature \(r \) is given by:
\[r = -\frac{32}{z^2}. \]

Since \(\{E_1, E_2, E_3\} \) forms a basis of the 3-dimensional \(\beta \)-Kenmotsu manifold, any vector field \(X, Y, Z, U \in \chi(M) \) can be written as
\[X = a_1E_1 + b_1E_2 + c_1E_3, \]
\[Y = a_2E_1 + b_2E_2 + c_2E_3, \]
\[Z = a_3 E_1 + b_3 E_2 + c_3 E_3, \]

\[U = a_4 E_1 + b_4 E_2 + c_4 E_3, \]

where \(a_i, b_i, c_i \in \mathbb{R}^+ \) for all \(i = 1, 2, 3 \) such that \(a_i, b_i, c_i \) are not proportional. Then

\[
R(X, Y)Z = -2z^2 \left\{ 2b_3(a_1b_2 - a_2b_1) + 3c_3(a_1c_2 - a_2c_1) \right\} E_1 \tag{3.3.10}
+ \frac{2}{z^2} \left\{ 2a_3(a_1b_2 - a_2b_1) - 3c_3(b_1c_2 - b_2c_1) \right\} E_2
+ \frac{6}{z^2} \left\{ b_3(b_1c_2 - b_2c_1) + a_3(a_1c_2 - a_2c_1) \right\} E_3,
\]

\[
R(X, Y)U = -2z^2 \left\{ 2b_4(a_1b_2 - a_2b_1) + 3c_4(a_1c_2 - a_2c_1) \right\} E_1 \tag{3.3.11}
+ \frac{2}{z^2} \left\{ 2a_4(a_1b_2 - a_2b_1) - 3c_4(b_1c_2 - b_2c_1) \right\} E_2
+ \frac{6}{z^2} \left\{ b_4(b_1c_2 - b_2c_1) + a_4(a_1c_2 - a_2c_1) \right\} E_3.
\]

In view of (3.3.10) we have from (3.3.1) that

\[
\tilde{C}(X, Y)Z = R(X, Y)Z - \frac{r}{6} [g(Y, Z)X - g(X, Z)Y]
\]

\[
= -2z^2 \left\{ 2b_3(a_1b_2 - a_2b_1) + 3c_3(a_1c_2 - a_2c_1) \right\}
- \frac{8}{3} \left\{ a_1(b_2b_3 + c_2c_3) - a_2(b_1b_3 + c_3c_1) \right\} E_1
+ \frac{2}{z^2} \left\{ 2a_3(a_1b_2 - a_2b_1) - 3c_3(b_1c_2 - b_2c_1) \right\} E_2
+ \frac{8}{3} \left\{ b_1(a_2a_3 + c_2c_3) - b_2(a_1a_3 + c_3c_1) \right\} E_2
+ \frac{2}{z^2} \left\{ 3b_3(b_1c_2 - b_2c_1) + a_3(a_1c_2 - a_2c_1) \right\} E_3
+ \frac{8}{3} \left\{ c_1(a_2a_3 + b_2b_3) - c_2(a_1a_3 + b_1b_3) \right\} E_3.
\]
Hence

\[
S(\tilde{C}(X,Y)Z, U) \tag{3.3.12}
\]
\[
= \frac{20a_4}{z^4} (2b_3(a_1b_2 - a_2b_1) + 3c_3(a_1c_2 - a_2c_1)
- \frac{8}{3} \{a_1(b_2b_3 + c_2c_3) - a_2(b_1b_3 + c_3c_1)\}
- \frac{20b_4}{z^4} [2a_3(a_1b_2 - a_2b_1) - 3c_3(b_1c_2 - b_2c_1)
+ \frac{8}{3} \{b_1(a_2a_3 + c_2c_3) - b_2(a_1a_3 + c_3c_1)\}
- \frac{24c_4}{z^4} [3\{b_3(b_1c_2 - b_2c_1) + a_3(a_1c_2 - a_2c_1)\]
+ \frac{8}{3} \{c_1(a_2a_3 + b_2b_3) - c_2(a_1a_3 + b_1b_3)\}].
\]

Similarly we obtain

\[
S(Z, \tilde{C}(X,Y)U) \tag{3.3.13}
\]
\[
= \frac{20a_3}{z^4} (2b_4(a_1b_2 - a_2b_1) + 3c_4(a_1c_2 - a_2c_1)
- \frac{8}{3} \{a_1(b_2b_4 + c_2c_4) - a_2(b_1b_4 - c_1c_4)\}
- \frac{20b_3}{z^4} [2a_4(a_1b_2 - a_2b_1) - 3c_4(b_1c_2 - b_2c_1)
+ \frac{8}{3} \{b_1(a_2a_4 + c_2c_4) - b_2(a_1a_4 + c_3c_4)\}
- \frac{24c_3}{z^4} [3\{b_4(b_1c_2 - b_2c_1) + a_4(a_1c_2 - a_2c_1)\]
+ \frac{8}{3} \{c_1(a_2a_4 + b_2b_4) - c_2(a_1a_4 + b_1b_4)\}].
\]
Now we have

\[
\begin{align*}
 g(Y, Z) &= a_2a_3 + b_2b_3 + c_2c_3, \\
 g(X, Z) &= a_1a_3 + b_1b_3 + c_1c_3, \\
 g(Y, U) &= a_2a_4 + b_2b_4 + c_2c_4, \\
 g(X, U) &= a_1a_4 + b_1b_4 + c_1c_4.
\end{align*}
\]

(3.3.14)

Also we have

\[
\begin{align*}
 S(Y, Z) &= -\frac{2}{z^2}(5a_2a_3 + 5b_2b_3 + 6c_2c_3), \\
 S(X, Z) &= -\frac{2}{z^2}(5a_1a_3 + 5b_1b_3 + 6c_1c_3), \\
 S(Y, U) &= -\frac{2}{z^2}(5a_2a_4 + 5b_2b_4 + 6c_2c_4), \\
 S(X, U) &= -\frac{2}{z^2}(5a_1a_4 + 5b_1b_4 + 6c_1c_4).
\end{align*}
\]

(3.3.15)

Therefore from (3.3.14) and (3.3.15) we have

\[
\begin{align*}
 g(Y, Z)S(X, U) - g(X, Z)S(Y, U) &
 + g(Y, U)S(X, Z) - g(X, U)S(Y, Z) \\
 &= \frac{2}{z^2}[(a_1c_2 - a_2c_1)(a_3c_4 + a_4c_3) + (b_1c_2 - b_2c_1)(b_3c_4 + b_4c_3)] \\
 &\neq 0,
\end{align*}
\]

since \(a_i, b_i, c_i\) are not proportional and assume that \((a_1c_2 - a_2c_1)(a_3c_4 + a_4c_3) + (b_1c_2 - b_2c_1)(b_3c_4 + b_4c_3) \neq 0\).

Also from (3.3.12) and (3.3.13) we get

\[
S(\tilde{C}(X,Y)Z, U) + S(Z, \tilde{C}(X,Y)U) \]
\[\frac{44}{3z^4}[(a_1c_2 - a_2c_1)(a_3c_4 + a_4c_3) + (b_1c_2 - b_2c_1)(b_3c_4 + b_4c_3)] \neq 0. \]

Let us consider the function

\[L_S = \frac{22}{3z^2} \] \hspace{1cm} (3.3.18)

By virtue of (3.3.18) we have from (3.3.16) and (3.3.17) that

\[
S(\check{C}(X,Y)Z,U) + S(Z,\check{C}(X,Y)U) = L_S[g(Y,Z)S(X,U) - g(X,Z)S(Y,U) - g(X,U)S(Y,Z)].
\]

Hence the \(\beta \)-Kenmotsu manifold \(M^3(\phi, \xi, \eta, g) \) is concircular Ricci pseudosymmetric. If \((g, \xi, \lambda) \) is a RAS on this \(\beta \)-Kenmotsu manifold \(M^3(\phi, \xi, \eta, g) \), then from (3.2.10) we get

\[r = -3\lambda - 2\beta, \]

i.e.,

\[-\frac{32}{z^2} = -3\lambda + \frac{4}{z}, \]

i.e.,

\[\lambda = \frac{4}{3} \left(\frac{1}{z} + \frac{8}{z^2} \right) \]

and hence from (3.3.9) we get

\[
L_S = -\beta^2 - (\xi\beta) + \frac{\lambda}{2} + \frac{\beta}{3} = \frac{22}{3z^2}, \quad \text{as} \quad \beta = -\frac{2}{z}, \xi = E_3 = \frac{\partial}{\partial z},
\]
which satisfies (3.3.18). Thus Theorem (3.3.1) is verified.

3.4 D-homothetic deformation and Ricci solitons

Let $M(\phi, \xi, \eta, g)$ be an almost contact metric manifold with $\dim M = n$. Then $\eta = 0$ defines a $(n - 1)$-dimensional distribution D on M. By an D-homothetic deformation [143], we mean a change of structure tensor of the form

$$\begin{align*}
\tilde{\phi} &= \phi, \\
\tilde{\xi} &= \frac{1}{a}\xi, \\
\tilde{\eta} &= a\eta, \\
\tilde{g} &= ag + a(a - 1)\eta \otimes \eta,
\end{align*}
$$

(3.4.1)

where a is a non-zero positive constant. This is to be noted that if $M(\phi, \xi, \eta, g)$ is an almost contact metric manifold then $\tilde{M}(\tilde{\phi}, \tilde{\xi}, \tilde{\eta}, \tilde{g})$ is also an almost contact metric manifold. Now we have from (10) that

$$
(\mathcal{L}_{\xi}g)(X, Y) = g(\nabla_X \xi, Y) + g(X, \nabla_Y \xi)
$$

(3.4.2)

$$
= 2\beta[g(X, Y) - \eta(X)\eta(Y)].
$$

Since the Lie derivative operator only depends on the smooth structure of the underlying manifold so we have

$$
(\mathcal{L}_{\xi}g)(X, Y) = g(\nabla_X \xi, Y) + g(X, \nabla_Y \xi)
$$

(3.4.3)

$$
= 2\beta[g(X, Y) - \eta(X)\eta(Y)]
$$

$$
= (\mathcal{L}_{\xi}\tilde{g})(X, Y).
$$
Again from (2) and (3.4.2) we have

$$S(X,Y) = -(\beta + \lambda)g(X,Y) + \beta \eta(X)\eta(Y). \quad (3.4.4)$$

Now applying D-homothetic deformation we have from (3.4.4) that

$$\bar{S}(X,Y) = -\frac{\lambda + \beta}{a}\bar{g}(X,Y) + \frac{(a - 1)(\lambda + \beta) + 1}{a^2}\bar{\eta}(X)\bar{\eta}(Y). \quad (3.4.5)$$

Next from (3.4.3) and (3.4.5) we have

$$(\mathcal{L}_{\xi}\bar{g})(X,Y) + 2\bar{S}(X,Y) + \bar{\lambda}\bar{g}(X,Y) + \bar{\mu}\bar{\eta}(X)\bar{\eta}(Y) = 0$$

for all $X, Y, Z \in \chi(M)$ with $\bar{\lambda} = \frac{\lambda - \beta}{a}$ and $\bar{\mu} = \frac{a\beta - 3a\lambda - \beta}{a^2}$. This shows that the structure $(\bar{g}, \bar{\xi}, \bar{\lambda}, \bar{\mu})$ is an η-RS structure on \bar{M}. Hence we can state the following:

Theorem 3.4.1. If (g, ξ, λ) is a RS structure on M, then the D-homothetic deformation transforms the RS structure into an η-RS structure.

3.5 Schouten-van Kampen connection and Ricci solitons

Let the metric g of a 3-dimensional β-Kenmotsu manifold be a RAS with respect to ∇. Now

$$(\mathcal{L}_{\xi}g)(X,Y) = g(\nabla_X \xi, Y) + g(X, \nabla_Y \xi) \quad (3.5.1)$$

$$= g(\nabla^*_X \xi - \beta\{\eta(X)\xi - \xi\}), Y)$$

$$+ g(X, \nabla^*_Y \xi - \beta\{\eta(Y)\xi - \xi\})$$

$$= g(\nabla^*_X \xi, Y) + g(X, \nabla^*_Y \xi) - \beta g(\eta(X)\xi, Y)$$

$$= \beta \eta(Y) + \beta \eta(X) - \beta g(X, \eta(Y)\xi)$$
Now from (2) and (3.5.1) we have

\[(L_\xi^* g)(X, Y) + 2S^*(X, Y) + 2\lambda g(X, Y) = (2\beta - 2\dot{\beta})\eta(X)\eta(Y) - \beta \{\eta(X) + \eta(Y)\} - 2(2\beta^2 + \dot{\beta})g(X, Y).\]

If \((g, \xi, \lambda)\) is a RAS structure on \(M\) with respect to \(\nabla\) then the RAS structure is preserved for the \(\nabla^*\) if and only if

\[(2\beta - 2\dot{\beta})\eta(X)\eta(Y) = \beta \{\eta(X) + \eta(Y)\} + 2(2\beta^2 + \dot{\beta})g(X, Y) \tag{3.5.3}\]

holds for arbitrary \(X, Y \in \chi(M)\).

So in particular putting \(X = Y = \xi\) in (3.5.3), we have \(\beta^2 + \dot{\beta} = 0\). This leads to the following:

Theorem 3.5.1. Let \((g, \xi, \lambda)\) be a RAS structure on non-regular \(\beta\)-Kenmotsu manifold \(M\) with respect to \(\nabla\) then the RAS structure is preserved for \(\nabla^*\).

Next, let \((g, \xi, \lambda)\) be a RAS on \(M\) with respect to \(\nabla^*\). Then we have

\[(L_\xi^* g)(X, Y) + 2S^*(X, Y) + 2\lambda g(X, Y) = 0.\]

But from (3.2.11), we have

\[(L_\xi^* g)(X, Y) = 0,\]

which shows that the Reeb vector field is Killing. Hence (3.5.4) implies that

\[S^*(X, Y) = -\lambda g(X, Y).\]

Thus we can state the following:
Theorem 3.5.2. If \((g, \xi, \lambda)\) is a RS on a \(\beta\)-Kenmotsu manifold with respect to \(\nabla^*\), then the manifold is \(K\)-contact Einstein.