1. The study provides a strong base for future research to find out the novel targets of autophagy and PCD mechanisms related to abiotic stress and will help to develop salt tolerant cultivars by targeting genes encoding autophagy and PCD.

2. The study can also be further extended to evaluate the molecular mechanism underlying the mechanism of action of PG under other types of biotic and abiotic stress conditions.

3. The mechanism of action CQ in inhibiting autophagy may be useful for further study to investigate the autophagy. With different concentrations of CQ and mutants can be screened and identified genes may be useful for the developing of transgenics with improved and tolerant cultivars against salt stress for sustainable agriculture.

4. Four different compounds have been isolated in the present study such as 1-methyl palmitate, 2, 4-Di-tert-butylphenol, 2-methyl propyl pentyl sulfide or Sulfurous acid and 2-4-hexadecanoyloxy-3-hydroxy-5-oxooxolan-2-yl-2-hydroxyethyl-hexadecanoate and one novel compound 2-4-hexadecanoyloxy-3-hydroxy-5-oxooxolan-2-yl-2-hydroxyethyl-hexadecanoate was identified. These novel compounds can be in the formulations of fungicides, pesticides and weedicides to protect the plants from various biotic and abiotic stress conditions.