HYPOTHESIS...
HYPOTHESIS

"After heavy destruction of ecological habitat by meteoritic impact the ecological succession may occur".

Lonar lake has been formed at 52000 ± 6000 years, that time all types living things were completely destroyed due to the extreme heat of the meteorite but in the present times huge biodiversity are formed it means that ecological succession process is occur in the Lonar Meteoritic Crater. According to definition of ecological succession, "Ecological succession is the observed process of change in the species structure of an ecological community over time." The community begins with relatively few pioneering plants and animals and develops through increasing complexity until it becomes stable or self-perpetuating. It is a phenomenon or process by which an ecological community undergoes more or less orderly and predictable changes at the time of crater formation disturbance or initial colonization of new habitat. Succession may be initiated either by formation of new, unoccupied habitat (e.g., a lava flow or a severe landslide) or by some form of disturbance (e.g., fire, severe wind throw) of an existing community. Succession that begins in new habitats, uninfluenced by pre-existing communities is called primary succession, whereas succession that follows disruption of a pre-existing community is called secondary succession.

Changes in life

Animal life also exhibit changes with changing Lonar community structure. In lichen stage the fauna is sparse. It comprises few mites, ants and spiders living in the cracks and crevices. The fauna undergoes a qualitative increase during herb grass stage. The animals found during this stage include, insects larval and adult forms, butterflies, ants, spiders, mites, etc. The animal population increases and diversifies with the development of forest climax community. The fauna consists of invertebrates like, millipedes, centipedes, ants, and vertebrates such as squirrels, snakes, various birds, lizards and frogs. Succession of micro-organisms like fungi, bacteria, etc. occurring within a microhabitat is known as microsuccession. This type of succession occurs within communities, for example in dead trees, animal droppings, etc. Microbial
communities may also change due to products secreted by the bacteria present. Changes of pH in a habitat could provide ideal conditions for a new species to inhabit the area. In some cases the new species may compete with the present ones for nutrients leading to the primary species demise. Changes can also occur by microbial succession with variations in water availability and temperature.