CHAPTER -1: INTRODUCTION

1.0. IMPORTANCE OF WATER 01
1.1. BUDGET BREAKUP OF PRECIPITATION 01
1.2. GLOBAL DISTRIBUTION OF WATER 02
1.3. DISTRIBUTION OF PRECIPITATION (INDIA) 03
1.4. HYDROGEOLOGICAL CYCLE 03
1.5. BACKGROUND OF THE THESSIS 04
1.6 NATURAL RECHARGE DEFINATION 06
1.7. IMPORTANCE OF EVALUATION OF NATURAL RECHARGE 08
1.8. METHODS OF ESTIMATION OF NATURAL RECHARGE 08
1.9. WATER SHED OR BASIN CONCEPT FOR RECHARGE ESTIMATION 09
1.10. GEOPHYSICAL TECHNIQUES USED TO EXPLORE GROUNDWATER 10
1.11. ELECTRICAL METHODS 14
CHAPTER- 2: ELECTRICAL METHODS OF GROUND WATER EXPLORATION

2.1. INTRODUCTION 18

2.2. DEFINATIONS 19

2.2.1: RESISTIVITY 19
2.2.2: RESISTANCE 19
2.2.3: TRUE AND APPARENT RESISTIVITY 19

2.3. MEASUREMENT OF RESISTIVITY 20

2.4. EQUIPMENT USED TO MEASURE RESISTIVITY 21

2.5. ELECTRODE CONFIGURATIONS 22

2.5.1: WENNER ARRAY 23
2.5.2: SCHLUMBERGER ARRAY 23
2.5.3: TWO ELECTRODE ARRAY 24
2.5.4: DIPOLE-DIPOLE ARRAY 24

2.6. RESISTIVITY PROFILING 25

2.7. VERTICAL ELECTRICAL SOUNDING (RESISTIVITY SOUNDING) 27

2.8. PRELIMINARY STUDY OF THE TERRAIN 29

2.9. SITE SELECTION AND LINE SURVEY 30

2.10. EQUIPMENT SET UP (IN THE FIELD) 32

2.11. MEASUREMENTS 33

2.12. TYPES OF SOUNDING CURVES 36

2.13. INTERPRETATION OF SOUNDING CURVES 38

2.14. INTERPRETATION OF TWO LAYERED CURVE 41

2.15. INTERPRETATION OF A THREE LAYERED CURVE 42

2.16. INTERPRETATION OF A FOUR (MULTILAYERED) LAYERED CURVE 43

2.17. COMPUTER INVERSION OF SOUNDING 45

2.18. STRATEGIES OF GROUND WATER EXPLORATION 47
6.6.1: About Dar-Zarrouk Parameters
6.6.2: Estimation of S and Rw
6.6.3: Theoretical Background For Correlation

CHAPTER-6: SIGNIFICANCE OF DAAR-ZARROUK PARAMETERS IN THE EXPLORATION OF SALINE AND FRESH WATER AQUIFERS

6.1. INTRODUCTION

6.2. PREVIOUS ATTEMPTS TO RESOLVE COASTAL AQUIFERS

6.3. BACKGROUND OF RESISTIVITY SOUNDING AND WELL LOGGING WITH REFERANCE TO FRESH AND SALINE AQUIFERS

6.4. THE STUDY AREA

6.5. GEOPHYSICAL DATA USED

6.6. CORRELATION TECHNIQUE

6.7. CORRELATION OF (h) WITH (1/Rw)

6.8. CORRELATION OF (S) WITH (Rw)

6.9. CLUSTER CORRELATION

6.10. MASTER CORRELATION

6.11. SCOPE FOR IMPROVING CORRELATION

6.12. CROSS VALIDATION OF ESTIMATED RW AND 1/RW BY CORRELATION

6.13. UTILITY OF RELATIONSHIP BETWEEN (S) AND (Rw) IN GROUND WATER EXPLORATION.

CHAPTER-7: COMPOSITE DAR-ZARROUK REGIME OF FRESH AND SALINE AQUIFERS

7.1. INTRODUCTION

7.2. METHODOLOGY OF DATA ANALYSES
<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3. ANALYSES OF SOUNDING AND BOREHOLE DATA</td>
<td></td>
</tr>
<tr>
<td>7.3.1. Average Composite Resistivity (pc) and Longitudinal Unit conductance (Sc) of fresh and saline water zones</td>
<td>138</td>
</tr>
<tr>
<td>7.4. GEOPHYSICAL CROSS SECTION</td>
<td>141</td>
</tr>
<tr>
<td>7.5. HYDROGEOLOGICAL EXPRESSION OF THE GEOPHYSICAL CROSS SECTIONS</td>
<td>148</td>
</tr>
<tr>
<td>7.6. GRAPHICAL RESOLUTION OF COMPOSITE cRw & Sc</td>
<td>150</td>
</tr>
<tr>
<td>CHAPTER-8: DAAR-ZARROUKS OF NATURAL RECHARGE</td>
<td></td>
</tr>
<tr>
<td>8.1. INTRODUCTION</td>
<td>161</td>
</tr>
<tr>
<td>8.2. BACKGROUND AND GEOLOGIC SEQUENCE OF THE STUDY AREA</td>
<td>163</td>
</tr>
<tr>
<td>8.3. ESTIMATION OF RECHARGE</td>
<td>164</td>
</tr>
<tr>
<td>8.4. GEOPHYSICAL INVESTIGATIONS</td>
<td>169</td>
</tr>
<tr>
<td>8.5. HYDROGEOLOGICAL ASPECTS OF NATURAL RECHARGE</td>
<td>172</td>
</tr>
<tr>
<td>8.6. GEOPHYSICAL ATTITUDE OF NATURAL RECHARGE</td>
<td>173</td>
</tr>
<tr>
<td>8.7. QUALITATIVE ANALYSES OF RECHARGE AND DAAR-ZARROUK PARAMETERS IN THE STUDY AREA</td>
<td>174</td>
</tr>
<tr>
<td>8.8. GRAPHICAL COMPARISON OF DAR-ZARROUK PARAMETERS AND NATURAL RECHARGE</td>
<td>176</td>
</tr>
<tr>
<td>8.9. ADVANTAGES AND APPLICATIONS OF RECHARGE PATTERNS</td>
<td>179</td>
</tr>
<tr>
<td>CHAPTER-9: CONCLUSIONS</td>
<td>182-192</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>193-201</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>202</td>
</tr>
</tbody>
</table>