LIST OF FIGURES

Figure 1.1 Cross section view of sheath-core yarn structure
Figure 1.2 Longitudinal view of sheath-core yarn structure
Figure 2.1 An outline sketch of the sheath-core spinning
Figure 2.2 Sheath-core yarn manufacturing on conventional ring frame
Figure 2.3 Diagram of sheath-core spinning process
Figure 2.4 Modified sheath-core spinning system
Figure 2.5 Schematic diagram of the “Sandwich type” staple core spinning system
Figure 2.6 Front sectional view of polyester staple -core /cotton-wrap yarn
Figure 2.7 Modified ring staple core spinning system
Figure 2.8 SRRC core wrap yarn spinning system
Figure 2.9 Self designed multi-section drawing frames and the ring spinning frame
Figure 2.10 Sheath core yarn prepared on air-jet machine
Figure 2.11 Sheath-core yarn prepared on rotor spinning machine
Figure 2.12 Sheath-core yarn prepare on Dreff 3 spinning machin
Figure 2.13 Relation between tenacity and cotton content
Figure 3.1 Schematic diagram of air jet spinning for sheath-core yarn
Manufacturing

Figure 3.2 The different types of sheath /core yarns were
preparing according to following chart

Figure 3.3 Specimen beam interactions

Figure 3.4 Detector of SEM

Figure 3.5 STAGE Diagram

Figure 3.6 Tensile and shear tests using KES-FB1

Figure 3.7 Bending test using KES-FB2

Figure 3.8 Compressibility test using KES-FB3

Figure 3.9 Surface characteristics test using KES-FB4

Figure 4.1 Evenness percentage of sheath-core yarns

Figure 4.2 Total imperfection of sheath-core yarn

Figure 4.3 Cross section view of polyester ring frame sheath-core yarn
when sheath-core percentage is 85/15

Figure 4.4 Cross section view of polyester air-jet sheath-core yarn when
sheath-core percentage is 85/15

Figure 4.5 Cross section view of polyester Ring frame sheath-core yarn
when sheath-core percentage is 75/25

Figure 4.6 Cross section views of polyester air-jet sheath-core yarn when
sheath-core percentage is 75/25

Figure 4.7 Polyester Air Jet sheath-core yarn Cross section view of
polyester air-jet sheath-core yarn when sheath-core percentage is 60/40
Figure 4.8 Cross section view of nylon ring frame sheath-core yarn when sheath-core percentage is 60/40

Figure 4.9 Cross section view of 100% cotton Ring Frame yarn

Figure 4.10 Cross section view of nylon ring frame sheath-core yarn when core percentage is 85/15

Figure 4.11 Cross section view of nylon air-jet sheath-core yarns when core percentage is 85/15

Figure 4.12 Cross section views of nylon air-jet yarns when core percentage is 75/25

Figure 4.13 Cross section view of nylon ring frame sheath-core yarn when core percentage is 60/40

Figure 4.14 Cross section view of nylon air-jet sheath-core yarns when core percentage is 60/40

Figure 4.15 Count Strength products of sheath-core yarns

Figure 4.16 Single yarn strength of sheath-core yarns

Figure 4.17 Breaking elongation % of sheath-core yarns

Figure 4.18 Energy to break of sheath-core yarns

Figure 4.19 Initial modulus of sheath-core yarns

Figure 5.1 Average value of abrasion resistance in percentage of sheath-core yarn fabrics

Figure 5.2 Average value of air permeability of sheath-core yarn fabrics

Figure 5.3 Average value of warp way crease of sheath-core yarn fabrics

Figure 5.4 Weft way crease recovery of sheath-core yarn fabrics

Figure 5.5 Average value of absorbency percentage of sheath-core yarn fabrics
Figure 5.6 Average value of warp tensile strength (Kgf) of sheath-core yarn fabrics

Figure 5.7 Average value of weft way tensile strength of sheath-core yarn fabrics (Kgf)

Figure 5.8 Average value of warp way tearing strength of sheath-core yarn fabrics (Kgf)

Figure 5.9 Average value of weft way tearing strength of sheath-core yarn fabrics (Kgf)

Figure 5.10 Average value of warp way breaking elongation percentage of sheath-core yarn fabrics (Kgf)

Figure 5.11 Average value of weft way breaking elongation percentage of sheath-core yarn fabrics (Kgf)

Figure 5.12 Dyed fabric when filament at the core was upto 25% and cotton sheath % was upto 75%

Figure 5.13 Dyed fabric when filament at the core was 40% and cotton sheath % was 60%