CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>I</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>III</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>V</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>IX</td>
</tr>
<tr>
<td>ABBREVIATIONS USED IN THIS THESIS</td>
<td>XIII</td>
</tr>
<tr>
<td>CHAPTER I</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Brief History</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Different Spinning Techniques to Produce Sheath-core yarn</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Ring spinning</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2 Rotor spinning</td>
<td>2</td>
</tr>
<tr>
<td>1.2.3 Friction spinning</td>
<td>3</td>
</tr>
<tr>
<td>1.2.4 Air-jet spinning</td>
<td>3</td>
</tr>
<tr>
<td>1.3. Sheath-core yarn structure</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Uses of sheath-core yarns</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Aim of thesis</td>
<td>5</td>
</tr>
<tr>
<td>1.6 Outline of chapters</td>
<td>6</td>
</tr>
</tbody>
</table>
CHAPTER II

LITERATURE REVIEW

2.1 Introduction 7

2.2 Manufacturing Techniques of Sheath-Core Yarns prepared on different spinning systems 8

2.2.1 Sheath-core yarn prepared on ring-spun spinning 9

2.2.2 Sheath-core yarn prepared on air-jet spinning 17

2.2.3 Sheath-core yarn prepared on rotor spinning 18

2.2.4 Sheath-core yarn prepared on DREF-3 spinning 20

2.3 Physical properties of sheath-core ring spun yarns 21

2.4 Physical properties of sheath-core yarns made on other spinning systems 26

2.5 Physical properties of sheath-core yarn fabrics Made from Different Core Spinning Systems 32

2.6 Low stress mechanical properties of sheath-core yarn fabrics 37

2.7 Summary 42

CHAPTER III

EXPERIMENTAL WORK

3.1 Introduction 43

3.2 Yarn preparation 43

3.2.1 Sheath /core yarn preparation on ring frame 45
3.2.2 Sheath-core yarn preparation on air-jet system 46
3.2.2.1 Air-jet machine principle and description 46
3.2.2.2 Preparation of sheath /core yarn by air-jet system 46
3.3 Yarn quality evaluation 50
3.3.1 Count strength product 50
3.3.2 Single yarn tensile property 50
3.3.3 Unevenness and Imperfections 50
3.3.4 Yarn cross sectional views by SEM 51
3.3.4.1 Generating electron beam 51
3.3.4.2 Principle of SEM imaging 51
3.3.4.3 Detector of SEM 52
3.3.4.4 Sample preparations and scanning of yarn cross section 53
3.3.5 Analysis of SEM Photographs 54
3.4 Fabric manufacturing 54
3.5 Testing of Fabric 55
3.5.1 Tensile behaviour of fabric 55
3.5.2 Abrasion resistance 55
3.5.3 Crease recovery 55
3.5.4 Tearing strength 56
3.5.5 Absorbency test 56
3.5.6 Air permeability 57
3.6 Low Stress mechanical properties of fabric tested on Kawabata KES-FB16-18 tester 57
3.6.1 Kawabata instrument 57

3.6.1.1 KES-FB1 (Tensile and shear tester) 58

3.6.1.2 KES-FB2 (Bending Tester) 60

3.6.1.3 KES-FB3 Schematic diagram KES-FB3 61

3.6.1.4 KES-FB4 (surface characteristic) 63

3.7 Statistical methods 65

3.7.1 ANOVA Single Factor 65

3.7.2 Correlation factor 69

3.7.3 Regression analysis 69

3.8 Summary 70

CHAPTER IV 71

4.0 Physical properties of sheath-core yarn

4.1 Introduction 71

4.2 Physical properties of sheath-core yarns 71

4.2.1 Evenness and total imperfections of polyester / Nylon 71

Sheath cover yarns.

4.2.2 Evaluation of cover percentage of sheath-core yarns by scanning electron microscope 74

4.2.3 Count strength product of sheath-core yarns 80

4.2.4 Single yarn strength of sheath-core yarns 84

4.2.5 Breaking Elongation percentage of sheath-core yarns 87

4.2.6 Energy to break of sheath-core yarns 90

4.2.7 Initial modulus of sheath-core yarns 94
4.3 Summary

CHAPTER V

5.0 Physical properties of sheath-core yarn fabrics

5.1 Introduction

5.2 Abrasion resistance of sheath-core yarn fabrics

5.3 Air permeability sheath-core yarn fabrics

5.4 Warp way crease recovery of sheath-core yarn fabrics

5.5 Weft way crease recovery of sheath-core yarn fabrics

5.6 Absorbency test

5.7 Tensile strength of sheath-core yarn fabrics

5.7.1 Warp way tensile strength of polyester sheath-core Yarn Fabrics

5.7.2 Warp way tensile strength of Nylon sheath-core Yarn Fabrics

5.7.3 Weft way tensile strength of polyester sheath-core Yarn Fabrics

5.7.4 Weft way tensile strength of nylon sheath-core Yarn Fabrics

5.8 Tearing strength of sheath-core yarn fabrics

5.8.1 Warp way tearing strength of polyester sheath-core yarn fabrics

5.8.2 Warp way tearing strength of nylon sheath-core yarn fabrics

5.8.3 Weft way tearing strength of sheath-core yarn fabrics with polyester and nylon yarn at the core
5.9 Warp and weft way breaking elongation percentage of sheath-core yarn fabrics

5.10 Dyed sheath-core yarn fabrics

5.11 Correlation and regression analysis between yarns physical properties and fabrics physical properties

5.12 Summary

CHAPTER VI

6.0 Low stress mechanical properties sheath-core yarn fabrics

6.1 Introduction

6.2 Low stress mechanical properties sheath-core yarn fabric

6.3 Parameters of Low stress mechanical properties of sheath-core yarn fabrics

6.3.1 Tensile strain under biaxial extension (EMT%)

6.3.2 Linearity of the stress-strain (LT)

6.3.3 Tensile energy (WT)

6.3.4 Tensile resilience (RT)

6.3.5 Shear rigidity (G)

6.3.6 The hysteresis of shear force 2HG and 2HG5

6.3.7 Bending rigidity (B)

6.3.8 Hysteresis of bending moment (2HB)

6.3.9 Linearity of compression and resilience (LC and RC Values)

6.3.10 Coefficient of friction (MIU)

6.3.11 Fabric hand value and appearance value