CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Electro Discharge Machining Process 1
1.2 Pulse Generator in EDM 2
1.3 EDM Process parameters 3
1.4 Electro Discharge Coating Process (EDC) 6
 1.4.1 Introduction to EDC 6
 1.4.2 Working Principle of EDC 7
1.5 Scope for the Work 8
1.6 Objectives of the Work 10

CHAPTER 2: LITERATURE SURVEY

2.1 Introduction 11
2.2 Background of the Research 11
2.3 Material Removal Mechanism in EDM 16
2.4 Mechanism of EDC 22
2.5 Electrodes for EDC and its Development 27
 2.5.1 Powder Metallurgy Process 27
 2.5.2 Electrode Development 30
2.6 Process Responses to EDC 35
 2.6.1 Layer Hardness 35
 2.6.2 Layer Thickness 41
 2.6.3 Surface Roughness 43
2.7 Role of Process Parameters on EDC 46
 2.7.1 Density of Electrode 46
2.7.2 Peak Current 47
2.7.3 No Load Voltage/Discharge Voltage 49
2.7.4 Discharge Duration/Pulse on Time-Off Time 50
2.7.5 Duty Factor 52
2.7.6 Electrode Polarity 53
2.7.7 Dielectric Liquid and Suspended Powder 56

2.8 Characteristic Studies Using Response Surface Methodology 60
2.9 Gaps in the Literature 63
2.10 Problem Formulation 64

CHAPTER 3: EXPERIMENTAL AND METHODOLOGY 65

3.1 Workpiece Selection 65
3.2 Electrode Development 66
 3.2.1 Introduction 66
 3.2.2 Pilot Experimentation for development of powder metallurgy Electrode 66
 3.2.3 Details of Experimentation for Powder Metallurgy Process 68
 3.2.4 Applied Pressure and Density of the electrode 71
 3.2.5 Discussion on electrode development 73
3.3 Electro-discharge coating Pilot Experimentation 74
 3.3.1 EDC Machine and its Specification 74
 3.3.2 Pilot Experimentation for EDM parameters 74
 3.3.3 Discussions on Pilot Experimentation 79
3.4 Research Experimentation 80
 3.4.1 Response Surface Methodology and Mathematical Modeling 80
 3.4.2 Central Composite Design 82
 3.4.3 Factors for Experimentation on EDM Machine 84
3.5 Process Response Studies 84
 3.5.1 Measurement of Layer Thickness 84
 3.5.2 Measurement of Layer Hardness 85
 3.5.3 Measurement of Surface Roughness 86
3.6 Surface Characterization
 3.6.1 Metallurgical Microscopy
 3.6.2 Scanning Electron Microscopy and EDX
 3.6.3 X-ray Diffraction of the coated Surface
3.7 Analysis of Variance (ANOVA)
3.8 Optimization Study
 3.8.1 Residual, Scatter, Interaction and RSM plots
 3.8.2 Response Optimization Study

CHAPTER 4: RESULTS AND CORRELATION DEVELOPMENT

ANALYSIS

4.1 Introduction
4.2 Experimental Results
4.3 Correlation Development for Layer Thickness using Response Surface Regression Analysis
4.4 Correlation Development for Layer Hardness using Response Surface Regression Analysis
4.5 Correlation Development for Surface Roughness using Response Surface Regression Analysis
4.6 Analysis of Variance (ANOVA)
 4.6.1 Analysis of Variance (ANOVA) for Layer Thickness μm
 4.6.2 Analysis of Variance (ANOVA) for Layer Hardness Hv
 4.6.3 Analysis of Variance (ANOVA) for Surface Roughness μm
4.7 Study of Plots and Response Optimization Analysis
 4.7.1 Residual Plots Analysis
 4.7.2 Scatter plots Analysis
 4.7.3 Response Optimization
 4.7.4 Main Effects Plots Analysis
 4.7.5 Interaction Plots Analysis
4.8 Discussion

4.8.1 Response Surface Regression Analysis
4.8.2 Analysis of Variance (ANOVA), Main Effects and Interaction Plots

CHAPTER 5: ELECTRO DISCHARGE COATING MECHANISM AND CHARACTERIZATION

5.1 Introduction
5.2 Electro Discharge Coating
 5.2.1 Factors and Mechanism of Material Deposition in EDC
 5.2.2 Pulse Wave Form
 5.2.3 Electrode Material
 5.2.4 Heat Affected Zone
 5.2.5 Discussion of EDC Process with W-C Phase Diagram
5.3 Characterization of EDC Samples
 5.3.1 Micro structure study with metallurgical microscopy
 5.3.2 SEM and EDX Analysis
 5.3.3 X-ray Diffraction (XRD) Analysis
5.4 Discussion on Coating Characterization

CHAPTER 6: PERFORMANCE VALIDATION OF EDC

6.1 Upset Forging Machine
6.2 Upset Forging Process
6.3 Validation Test
6.4 Remarks on Validation test