NOMENCLATURE

Mathematical modeling

\(T(r, z, t) \) Temperature distribution function, °C

\(P \) Power, \(W \)

\(Q_f \) Heat flux, \(W/m^2 \)

\(T_{\text{max}} \) Maximum temperature, °C

\(a \) Radius of heat source, \(mm \)

\(A \) Area of heat source, \(mm^2 \)

\(c_p \) Specific heat, \(J/kg \)

\(k \) Thermal conductivity, \(W/m°C \)

\(r \) Radial distance, \(μm \)

\(s \) Laplace transformed variable of \(t' \)

\(\lambda \) Hankel transformed variable of ‘\(r \)’

\(t \) Pulse duration, \(ms \)

\(H_2 \) Hermite polynomial

\(J_0 \) Bessel function of order zero

\(J_1 \) Bessel function of order one

\(I_{\frac{1}{2}} \) Modified spherical Bessel function of first kind of fractional order

\(K_{\frac{1}{2}} \) Modified spherical Bessel function of second kind of fractional order
erfc Complementary error function

\(\alpha \) Thermal diffusivity, \(m^2/s \)

\(\rho \) Density, \(kg/m^3 \)

\(z \) Case depth, \(\mu m \)

ANOVA and Process optimization

\(f \) Degrees of freedom

\(S \) Sum of squares

\(V \) Variance

\(F \) F-ratio

\(S' \) Pure sum of squares

\(P \) Percentage contribution

\(S/N \) Signal to noise ratio

\(MSD \) Mean Squared Deviation

\(\overline{A_1}, \overline{A_2}, \ & \overline{A_3} \) Factor A average at level 1, 2 and 3 respectively

\(\overline{B_1}, \overline{B_2}, \ & \overline{B_3} \) Factor B average at level 1, 2 and 3 respectively

\(\overline{A_1B_1} \) Average of result of factor A at level 1 and factor B at level 1

\(C. I. \) Confidence Interval

\(n_1 \) Degree of freedom for mean

\(n_2 \) Degree of freedom for error

\(F(n_1,n_2) \) F-value for degree of freedom for mean and error

\(V_e \) Variance of error term

\(N_e \) Effective number of replications

\(C. L. \) Confidence level