CONTENTS

Certificate i
Acknowledgements iii
Abstract v
Table of contents vii
List of figures xii
List of tables xv
Nomenclature xvi

Chapter 1 Introduction 1
1.1 Basic laser-material interaction 1
1.2 Laser surface treatment processes 2
1.3 Laser hardening 4
 1.3.1 Transformation hardening 6
 1.3.2 Advantages of laser hardening 7
1.4 Objectives of the work 8
1.5 Organization of the thesis 9

Chapter 2 Literature survey 10
2.1 Introduction 10
2.2 Principles of laser transformation hardening 12
 2.2.1 Beam-material interaction 13
 2.2.2 Composition and microstructure 14
 2.2.3 Phase transformation in heating 15
 2.2.4 Microstructure homogenization 15
 2.2.5 Phase transformation in cooling 16
 2.2.6 Microstructure and properties 18
2.3 Practice of laser transformation hardening 18
 2.3.1 Material properties 19
 2.3.1.1 Composition 19
 2.3.1.2 Geometry 20
2.3.1.3 Absorptivity

2.3.2 Beam properties
 2.3.2.1 Wavelength
 2.3.2.2 Power
 2.3.2.3 Power density
 2.3.2.4 Beam interaction time

2.3.3 Process properties
 2.3.3.1 Process gases
 2.3.3.2 coverage of large areas

2.4 Properties of hardened materials
 2.4.1 Carbon-manganese steels
 2.4.1.1 Hypoeutectoid steels
 2.4.1.2 Hypereutectoid steels
 2.4.2 Alloy steels
 2.4.2.1 Low alloy steels
 2.4.2.2 Medium alloy steels
 2.4.2.3 High alloy steels
 2.4.3 Tool steels
 2.4.3.1 Oil hardening tool steels
 2.4.3.2 Air hardening tool steels
 2.4.4 Stainless steel
 2.4.5 Cast irons
 2.4.5.1 Grey irons
 2.4.5.2 Pearlitic grey iron
 2.4.5.3 Ferritic grey iron
 2.4.5.4 Austenite grey iron
 2.4.5.5 Nodular iron
 2.4.5.6 Pearlitic nodular iron
 2.4.5.7 Ferrite nodular iron
 2.4.5.8 Ferrite-pearlitic nodular iron
4.6 Post-experimental specimen preparation
4.7 Metallographic analysis
4.8 Measurement of micro hardness
4.9 Pilot experimentation
 4.9.1 Spots of different beam power at constant beam spot size
 4.9.2 Spots of different beam spot sizes at constant beam power
4.10 Surface hardness variation

Chapter 5 Process optimization
5.1 Introduction
5.2 Design of Experiments
5.3 Selection of an Orthogonal Array
5.4 Selection of Factors
5.5 Selection of levels of factors
5.6 Values of factors at the respective levels
5.7 Allotment of priorities to the factors
5.8 Orthogonal array plan for experiments
5.9 Generated orthogonal array
5.10 Experiments
5.11 Measurement of response variables
5.12 Results
5.13 ANOVA (Analysis of Variances)
 5.13.1 S/N Ratios
 5.13.2 Main effects (Average effects of factors and interactions)
 5.13.3 Estimated result at optimum condition
 5.13.4 Confidence interval of the results at the optimum condition
 5.13.5 Result of confirmation experiment-Case depth
5.14 Laser transformation hardening with overlapping spots
 5.14.1 Thermal effect of overlapping successive spots 120
 5.14.2 Experimental method for overlapping successive spots 120
 5.14.3 Microhardness study 122
5.15 Wear test 128
5.16 Validation of mathematical model 128

Chapter 6 Summary, Conclusions and Future scope 134
 6.1 Summary 134
 6.2 Conclusions 135
 6.3 Future scope 136

References 137

Appendices 145
 Appendix 1 Laplace transformation - Definition and some results 145
 Appendix 2 Hankel Transformation - Definition and some results 148
 Appendix 3 List of formulae 149
 Appendix 4 Analysis of Variance (ANOVA) - Computational procedure 152
 Appendix 5 Gaussian Error Function 155
 Appendix 6 Theoretical temperature estimation - A sample calculation 156