APPENDIX-6

Theoretical temperature estimation - A sample calculation

Theoretical temperature estimation at the depth \(z \) 359.66 \(\mu \)m and the corresponding longitudinal points

The temperature at various depths \(z \) below the surface and the various corresponding points in the longitudinal directions can be calculated using the equation (3.27) as below

\[
T(r, z, t) = \frac{2Q}{k} \sqrt{\alpha t} \left[\text{erfc} \left(\frac{z}{2\sqrt{\alpha t}} \right) - \text{erfc} \left(\frac{\sqrt{z^2 + a^2}}{2\sqrt{\alpha t}} \right) \right] e^{-\frac{x^2}{4\sigma^2}} \quad \text{--- (3.27)}
\]

Case depth \(z \) = 359.66 \(\mu \)m = 359.66 X 10\(^{-6}\) m

Thermal diffusivity \(\alpha \) = 1.703 X 10\(^{-5}\) m\(^2\)/sec

Thermal conductivity \(k \) = 52 W/mK

Pulse duration \(t \) = 13.5 msec i.e. Power = 890 Watts

Beam spot size = 1.263 mm

Maximum theoretical case depth = \(\sqrt{\alpha t} \)

\[
= \sqrt{1.703 \times 10^{-5} \times 13.5 \times 10^{-3}} = 4.79 \times 10^{-4} \text{m} = 479 \mu \text{m}
\]

Effective spot size (beam diameter) is considered as 0.86 of the beam spot size.

Therefore, effective spot size = 0.86 X 1.263 =1.086 mm

The effective beam diameter at the maximum theoretical depth is considered as zero.

Therefore, the effective beam diameter at the depth (479 - 359.66) = 0.2713 mm and

The effective beam radius = \(a \) = 0.1356 mm = 0.1356 X 10\(^{-3}\) m
Appendices 157

I- \[\text{ierfc} \left(\frac{z}{2\sqrt{at}} \right) \]

\[\text{ierfc} \left(\frac{359.33 \times 10^{-6}}{2 \times 479 \times 10^{-6}} \right) = \text{ierfc}(0.375) \]

\[= \frac{e^{-0.375^2}}{\sqrt{\pi}} - (0.375)[1 - \text{erf}(0.375)] = 0.9001 - (0.375)(1 - 0.399) \]

\[= 0.2648 \]

II- \[\text{ierfc} \left(\frac{\sqrt{z^2 + a^2}}{2\sqrt{at}} \right) \]

\[\text{ierfc} \left(\frac{\sqrt{(359.33 \times 10^{-6})^2 + (0.1356 \times 10^{-3})^2}}{2 \times 479 \times 10^{-6}} \right) = \text{ierfc}(0.40093) \]

\[= \frac{e^{-0.40093^2}}{\sqrt{\pi}} - (0.40093)[1 - \text{erf}(0.40093)] = 0.48041 - (0.40093)(1 - 0.42839) \]

\[= 0.2512 \]

III- \[\frac{2Q_f}{\sqrt{at}} \]

\[Q_f = \frac{\text{Power}}{\text{Area}} = \frac{890}{\pi (0.1356 \times 10^{-3})^2} = 154.07 \times 10^6 \text{W/m}^2 \]

\[\frac{2Q_f}{\sqrt{at}} = \frac{2 \times 154.07 \times 10^6 \times 479 \times 10^{-6}}{52} = 283844.3462 \]

Accounting losses for 70% and substituting for I, II and III we get

\[T_{(r, z; t)} = 0.3 \times 283844.3462(0.2648 - 0.2512)e^{\left(\frac{r^2}{4at}\right)} = 1158.08453e^{\left(\frac{r^2}{4at}\right)} \]

At \(r=0 \mu m \),

\[e^{\left(\frac{r^2}{4at}\right)} = 1 \quad \therefore T_{(r, z; t)} = 1158.53K = 885.53^\circ C \]

At \(r=100 \mu m \),

\[e^{\left(\frac{r^2}{4at}\right)} = 0.989 \quad \therefore T_{(r, z; t)} = 1158.53 \times 0.989 = 1145.82K = 872.82^\circ C \]

Similarly the temperatures at the respective longitudinal distances are calculated by computing \(e^{\left(\frac{r^2}{4at}\right)} \) for that point.