TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES
ACKNOWLEDGEMENTS
LIST OF SYMBOLS AND ABBREVIATIONS
PREFACE
SUMMARY
CHAPTERS

CHAPTER 1

1. Standing stock production by microalgae consortia for CO₂ Sequestration and mitigation (1-10)

1.1 Summary
1.2 Introduction
1.3 Materials and Methods
 1.3.1 Test strains
 1.3.2 Growth measurements
 1.3.3 Estimation of total carbohydrates
 1.3.4 Estimation of reducing sugars
 1.3.5 Pulse Amplitude Modulation (PAM) analysis
 1.3.6 Carbonic anhydrase assay
 1.3.7 Statistical analyses
1.4 Results and discussion
 1.4.1 Growth behaviour
 1.4.2 Total carbohydrates and reducing sugar yields
 1.4.3 Biomass production
 1.4.4 Fluorescence measurement
 1.4.5 Carbonic anhydrase activity
1.5 Conclusion
CHAPTER 2

2. Microalgae consortia role in ecological biomass stability through CO₂ Sequestration

2.1 Summary
2.2 Introduction
2.3 Materials and Methods
 2.3.1 Test strains
 2.3.2 Growth measurement
 2.3.3 Microscopy
 2.3.4 Estimation of chlorophyll
 2.3.5 Estimation of carotenoid
 2.3.6 Estimation of phycobiliprotein
 2.3.7 Carbohydrate quantification
 2.3.8 Estimation of protein
 2.3.9 Estimation of proline
 2.3.10 Pulse Amplitude Modulation (PAM) analysis
 2.3.11 Estimation of dried biomass
 2.3.12 Carbonic anhydrase assay

2.4 Results and Discussion
 2.4.1 Cyanobacteria/ Algae in monoculture and consortia
 2.4.2 Total carbohydrates in community
 2.4.3 Total dried biomass of consortia; Impact population-level stability
 2.4.4 The strength of sampling effect on protein and proline in consortia
 2.4.5 Consortia impact on community stability with respect to pigment biomass
 2.4.6 Interactions in non-photochemical quenching of consortia
 2.4.7 Carbonic Anhydrase activities in consortia

2.5 Conclusion
CHAPTER 3

3. Chromium effect on microalgae community structure, biomass production and services

3.1 Summary
3.2 Introduction
3.3 Materials and Methods
 3.3.1 Strains
 3.3.2 Culture conditions
 3.3.3 Experimental designs
 3.3.4 Microscopy
 3.3.5 Chlorophyll estimation
 3.3.6 Carotenoid estimation
 3.3.7 Phycobiliprotein estimation
 3.3.8 Carbohydrate estimation
 3.3.9 Protein estimation
 3.3.10 Proline estimation
 3.3.11 Malondialdehyde (MDA) estimation
 3.3.12 Super Oxide Dismutase (SOD) estimation
 3.3.13 Statistical analyses
3.4 Results and discussion
 3.4.1 Cr alters the microalgae and community growth and biomass production
 3.4.2 Changes in photosynthetic pigments in monocultures and consortia
 3.4.3 Photosystem II in monocultures and microalgae community showed altered performance
 3.4.4 Photosynthetic pigments
 3.4.5 Protein content
 3.4.6 Proline content
 3.4.7 Oxidative damage
3.5 Conclusion
CHAPTER 4

4. Microalgae consortia and adsorption of hexavalent chromium (51-69)

4.1 Summary
4.2 Introduction
4.3 Materials and Methods
 4.3.1 Microalgae cultures
 4.3.2 Culture conditions
 4.3.3 Experimental design
 4.3.4 Bio-sorption of chromium by different species and consortia
 4.3.5 Calculation of LD$_{50}$
 4.3.6 Chlorophyll a (chl-a) fluorescence
 4.3.7 Microscopy
 4.3.8 Scanning Electron Microscopy (SEM)
 4.3.9 Laser Induced Breakdown Spectroscopy (LIBS)
 4.3.10 Atomic Absorption Spectroscopy (AAS)
 4.3.11 Statistical analyses
4.4 Results and discussion
 4.4.1 Chromium Induced changes in microalgae community
 4.4.2 Fluorescence response of chlorophyll a
 4.4.3 Scanning Electron Microscopy (SEM)
 4.4.4 Bio-sorption of chromium by various monocultures and their consortia
 4.4.5 Laser Induced Breakdown Spectroscopy (LIBS)
 4.4.6 Atomic Absorption Spectroscopy (AAS)
4.5 Conclusion

CHAPTER 5

5. Effects of EMS mutant in different synthetic consortia and their comparative studies for environment sustainability (70-101)
5.1 Summary
5.2 Introduction
5.3 Materials and Methods
 5.3.1 Microalgae consortia development
 5.3.2 Culture conditions
 5.3.3 Microscopy
 5.3.4 Growth attributes and kinetics
 5.3.5 Biomass determination; dry weight (mg/mL)
 5.3.6 Development of mutagenic strains using EMS
 5.3.7 Pigment analysis
 5.3.8 Chlorophyll estimation
 5.3.9 Estimation of carotenoid
 5.3.10 Estimation of phycocyanin
 5.3.11 Carbohydrate extraction
 5.3.12 Total cell protein estimation
 5.3.13 Protein extraction and total cell protein profiling
 5.3.14 Quantification of lipid accumulated in microalgae wild type and mutant species
 5.3.15 Carbon content analysis by modified Walkley-Black titration
 5.3.16 Statistical methods
5.4 Results and discussion
 5.4.1 EMS mutants of 5 microalgae, have different survival rates
 5.4.2 EMS mutagenized microalgae strains have altered functioning and they show modified services than indigenous microalgae
 5.4.3 Impact of EMS mutant on chlorophyll fluorescence response
 5.4.4 Pigments and biochemicals
 5.4.5 Total cell protein profiling of different EMS mutants and WT microalgae revealed mutated proteins related photosynthesis
 5.4.6 Carbon content and carbon fixation
5.5 Conclusion
CHAPTER 6
6. Photochemical and non-photochemical quenching study of microalgae and their consortia for CO₂ sequestration using carbonic anhydrase activity (102-118)

6.1 Summary
6.2 Introduction
6.3 Materials and Methods
 6.3.1 Sampling
 6.3.2 Determination of the activity of carbonic anhydrase (CA)
 6.3.3 Extracellular Carbonic Anhydrase
 6.3.4 Total Carbonic Anhydrase
 6.3.5 Measurement of enzymatic activity
 6.3.6 Measurement of chlorophyll a fluorescence
 6.3.7 Quenching measurements
6.4 Results and discussion
 6.4.1 Carbonic Anhydrase activity of microalgae and consortia
 6.4.2 Chlorophyll fluorescence on CO₂ fixation
 6.4.3 Quenching analysis of monocultures and consortia
 6.4.4 Photoprotection response of monocultures and consortia
 6.4.5 Applying fluorescence analysis in microalgae monocultures and in consortia
 6.4.6 Exploiting Rubisco diversity to learn more about function
6.5 Conclusion

CHAPTER 7
7. Development of designer microalgae consortia for resource capture, biomass stability and CO₂ assimilation (119-144)

7.1 Summary
7.2 Introduction
7.3 Material and methods
 7.3.1 Microalgae consortium
 7.3.2 Culture conditions
7.3.3 Growth attributes and Kinetics
7.3.4 Carbon photo-fixation analyses
7.3.5 CO₂ fixation rate and its measurement
7.3.6 Estimation of carbohydrate
7.3.7 Estimation of lipid
7.3.8 LIBS (Laser Induced Breakdown Spectroscopy) experimental setup
7.3.9 Statistical methods and modeling for media optimization (RSM)
7.3.10 Statistical analyses

7.4 Results and discussion
7.4.1 Screening of consortia and growth kinetics
7.4.2 Growth medium optimization and productivity analysis
7.4.3 Photosynthetic efficiency
7.4.4 CO₂ sequestration and biomass enrichment
7.4.5 CO₂ fixation rate
7.4.6 Carbohydrate and lipid analysis
7.4.7 Principal Component analysis (PCA)
7.4.8 Elemental analysis
7.4.9 Fluorescence response of 8 microalgae consortia
7.4.10 Effect of different dose of % CO₂ concentration on growth of microalgae consortia
7.4.11 Discussion

7.5 Conclusion

REFERENCES (145-160)