List of Table.

Table 1.1: organic reactions catalyzed by ionic liquids
Page no. 2

Table 1.2: Optimization of reaction.
Page no. 12

Table 1.3: Water promoted organic reactions.
Page no. 12

Table 1.4: Applications of polymer supported reagent
Page no. 16

Table 2.1.1: Optimization of the reaction conditions a
Page no. 31

Table 2.1.2: Synthesis of 4-aryhexahydro-1H-pyran[2,3-d]pyrimidin-(8aH)-ones(4a-l).
Page no. 31

Table 2.2.1: Synthesis of piperidine under various conditions
Page no. 42

Table 2.2.2: Synthesis of highly substituted piperidine (4a-r).
Page no. 44

Table 2.2.3: Comparison of present method with reported methods.
Page no. 45

Table 3.1.1: Synthesis of substituted pyridine 4a under various reaction condition
Page no. 59

Table 3.1.2: Effect of various solvent on the synthesis of substituted pyridine 4a
Page no. 59

Table 3.1.3: Synthesis of 2- amino 3,5 dicarbonitrile-6-thio pyridines
Page no. 60

Table 3.1.4: Camparision of catalytic activity of TBAB-Cs2CO3 against other reported catalyst for the conversion of benzaldehyde into corresponding substituted pyridine derivative.
Page no. 61

Table 3.2.1: Synthesis of 5a under various conditions
Page no. 78

Table 3.2.2: Multicomponent reaction for the synthesis of Multisubstitute pyridines 5a-n
Page no. 79-80

Table 3.2.3: Optimization of catalyst by different reported methods on the reaction of 4-chlorobenzaldehyde.
Page no. 81

Table 3.3.1: Synthesis of 5a under various conditions.
Page no. 95

Table 3.3.2: Synthesis of 2H-indazole[2,1-b] phthalazine-trione derivatives, by combing TBAB and Cs2CO3 as a catalyst at room temperature (4a-p)
Page no. 96

Table 3.3.3: Literature serve of the synthesis of 2H-indazolo[2,1-b] phthahazine-1,6,11 (13H)-tr trione.
Page no. 98

Table 3.4.1: Optimization of reaction condition in the Synthesis of benzylpyrazolyl coumarin
Page no. 110

Table 3.4.2: Synthesis of benzylpyrazolyl coumarines (5a-k).
Page no. 112

Table 3.4.3: Catalyst optimization by reported methods.
Page no. 113
Table 4.1.1: Synthesis of benzopyrano [2,3-\textit{b}] pyridine derivatives (4a-k).
Table 4.1.2: Comparison and optimization of catalyst by reported method.
Table 4.2.1: Optimization reaction condition.
Table 4.2.2: Synthesis of 3, 4-dihydropyrano[c] chromene derivatives (4a-m).
Table 4.2.3: Comparison of present method with reported methods.
Table 5.1.1: N-formylation of aniline with formic acid in various reaction conditions.
Table 5.1.2: Effect of various solvents on N-formylation of aniline (1a) (1 mmol) with formic acid (2) (2mmol).
Table 5.1.3: N-Formylation of secondary amines and anilines with formic acid (3a-v).
Table 5.1.4: Comparison of some reported methods with present method PEG-HBF₄ solvent free at room temperature.
Table 5.2.1: aReaction condition optimization in the tetrahydropyanylation of benzyl alcohol with PEG-HBF₄ at room temperature.
Table 5.2.2: Synthesis of tetrahydropyanylation from benzyl alcohol and phenol reacted with 3,4-dihydro-2\textit{H}-pyran to give (3a-3q).
Table 5.2.3: Comparison of some reports on tetrahydropyranylation of benzyl alcohols and phenols
Table 6.1.1: Effect of Lewis acid in a reaction 1a and 2 to give benzyl acetate 3a (scheme \textit{1})a
Table 6.1.1: Optimization reaction conditions
Table 6.1.3: Synthesis of esters using alcohols and acetic acid
Table 6.1.4: Comparison of catalytic activity of Fe(ClO₄)₂·H₂O catalyst with various catalysts for acetylation from substituted alcohols with acetic acid.
Table 6.2.1: Synthesized derivatives of acylation by using alcohols and acetic anhydride
Table 6.2.2: Comparative studies of catalysts with present methods
Table 6.3.1: Synthesized quinazolines derivatives by using various benzaldehydes
Table 6.3.2: Comparative studies of catalyst with present methods
Table 6.4.1: Synthesized derivative of pyranopyrazoles by using various benzaldehyde 5a-m.
Table 6.4.2: Comparative studies of catalyst with present methods.
Table 7.1.1: Synthesized derivatives of S-triazine (5a-l).
Table 7.1.2: Antimicrobial and hemolytic activity of trazine based chalcones
| Table-7.1.3: Anti oxidant activity (DPPH and OH Activity) of S-triazine based variousaldehyde derivatives compare with ascorbic acid |
|---|---|
| | |
| | |
| | |
| | |
| | |