List of Figures

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Figure caption</th>
<th>Pg. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Energy resources of the world</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Renewable energy share of global electricity production based on renewable generating capacity at the end of year 2015</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>World energy use and renewable energy share in heat sector in %</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Comparison of conventional solar thermal energy absorbers with nanofluid based absorbers</td>
<td>24</td>
</tr>
<tr>
<td>2.1</td>
<td>Types of solar absorber coatings</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental setup for preparation of copper and aluminium nanofluid under high intensity ultrasound irradiation</td>
<td>96</td>
</tr>
<tr>
<td>3.2</td>
<td>Experimental setup for measurement of heat transfer coefficient (h)</td>
<td>97</td>
</tr>
<tr>
<td>3.3</td>
<td>Experimental setup for solar energy absorption using Cu and Al nanofluid</td>
<td>98</td>
</tr>
<tr>
<td>3.4</td>
<td>Experimental setup for copper nanoparticles enabled solar distillation of azeotropic mixture</td>
<td>100</td>
</tr>
<tr>
<td>3.5</td>
<td>X-ray diffraction patterns of Cu nanoparticles showing effect of amount of reducing agent (A) 10 g glucose, (B) 15 g glucose and (C) 20 g glucose</td>
<td>101</td>
</tr>
<tr>
<td>3.6</td>
<td>SEM images of Cu nanoparticles showing effect of amount of reducing agent (A) 10 g glucose, (B) 15 g glucose and (C) 20 g glucose</td>
<td>102</td>
</tr>
<tr>
<td>3.7</td>
<td>DLS results of Cu nanoparticles showing effect of amount of reducing agent (A) 10 g glucose, (B) 15 g glucose and (C) 20 g glucose</td>
<td>103</td>
</tr>
<tr>
<td>3.8</td>
<td>X-ray diffraction patterns of Cu nanoparticles showing effect of type of surfactant (A) SLS, (B) PVP (C) CTAB and (D) Myristic acid</td>
<td>104</td>
</tr>
<tr>
<td>3.9</td>
<td>SEM images of Cu nanoparticles showing effect of type of surfactant (A) SLS, (B) PVP (C) CTAB and (D) Myristic acid</td>
<td>105</td>
</tr>
</tbody>
</table>
3.10 X-ray diffraction patterns of Cu nanoparticles showing effect of concentration of SLS surfactant (A) 0.01 M SLS, (B) 0.05 M SLS and (C) 0.1 M SLS

3.11 X-ray diffraction patterns of Cu nanoparticles showing effect of concentration of PVP surfactant (A) 0.001 M PVP, (B) 0.002 M PVP and (C) 0.003 M PVP

3.12 X-ray diffraction patterns of Cu nanoparticles showing effect of concentration of CTAB surfactant (A) 0.005 M CTAB and (B) 0.01 M CTAB

3.13 SEM images of Cu nanoparticles showing effect of concentration of SLS surfactant (A) 0.01 M SLS, (B) 0.05 M SLS and (C) 0.1 M SLS

3.14 SEM images of Cu nanoparticles showing effect of concentration of PVP surfactant (A) 0.001 M PVP, (B) 0.002 M PVP and (C) 0.003 M PVP

3.15 DLS results of Cu nanoparticles showing effect of concentration of SLS surfactant (A) 0.01 M SLS, (B) 0.05 M SLS and (C) 0.1 M SLS

3.16 DLS results of Cu nanoparticles showing effect of concentration of PVP surfactant (A) 0.001 M PVP, (B) 0.002 M PVP and (C) 0.003 M PVP

3.17 DLS results of Cu nanoparticles showing effect of concentration of CTAB surfactant (A) 0.005 M CTAB and (B) 0.01 M CTAB

3.18 X-ray diffraction patterns of aluminium nanoparticles

3.19 FESEM images of aluminium nanoparticles

3.20 Variation of density of nanofluid with concentration (volume %) of copper in water

3.21 Variation of viscosity of nanofluid with concentration of copper (volume %) in water

3.22 Variation of density of nanofluid with concentration of aluminium (volume %) in water

3.23 Temperature versus time plot for solar energy absorption by using copper (100 nm) nanofluid in water

3.24 Effect of particle concentration on efficiency of solar energy absorption for copper (100 nm) nanofluid in water
3.25 Temperature versus time plot for solar energy absorption by using copper (100 nm) nanofluid in ethylene glycol (MEG)
3.26 Temperature versus time plot for solar energy absorption by using copper (100 nm) nanofluid in silicone oil
3.27 Temperature versus time plot for solar energy absorption by using aluminium (150 to 250 nm) nanofluid in water
3.28 Effect of particle concentration on efficiency of solar energy absorption for aluminium (150-250 nm) nanofluid in water
3.29 Temperature versus time plot for solar energy absorption by using aluminium (150 to 250 nm) nanofluid in ethylene glycol (MEG)
3.30 Temperature versus time plot for solar energy absorption by using aluminium (150 to 250 nm) nanofluid in silicone oil
3.31 Temperature versus time plot for solar desalination by using copper nanoparticles (100 nm) in hard water
3.32 Effect of particle concentration on efficiency of solar water desalination for copper nanoparticle (100 nm)
3.33 Temperature versus time plot for solar desalination by using copper nanoparticles (100 nm) in sea water
3.34 Temperature versus time plot for solar desalination by using aluminium nanoparticles (150 to 250 nm) in hard water
3.35 Effect of particle concentration on efficiency of solar water desalination for aluminium nanoparticle (150 to 250 nm)
3.36 Temperature versus time plot for solar desalination by using aluminium nanoparticles (150 to 250 nm) in sea water
4.1 XRD patterns of CuO nanomaterial showing effect of NaOH concentration (A) 0.25M NaOH, (B) 0.5M NaOH and (C) 1M NaOH
4.2 SEM images of CuO nanomaterial showing effect of NaOH concentration (A) 0.25M NaOH, (B) 0.5M NaOH and (C) 1M NaOH
4.3 DLS results of CuO nanomaterial showing effect of NaOH concentration (A) 0.25M NaOH, (B) 0.5M NaOH and (C) 1M NaOH
4.4 XRD patterns of CuO nanomaterial showing effect of initial concentration of reactants (A) 0.076 M CuCl$_2$ and 1 M NaOH, (B) 0.038 M CuCl$_2$ and 0.5 M NaOH and (C) 0.0076 M CuCl$_2$ and 0.1 M NaOH

4.5 SEM images of CuO nanomaterial showing effect of initial concentration of reactants (A) 0.076 M CuCl$_2$ and 1 M NaOH, (B) 0.038 M CuCl$_2$ and 0.5 M NaOH and (C) 0.0076 M CuCl$_2$ and 0.1 M NaOH

4.6 DLS results of CuO nanomaterial showing effect of initial concentration of reactants (A) 0.076 M CuCl$_2$ and 1 M NaOH, (B) 0.038 M CuCl$_2$ and 0.5 M NaOH and (C) 0.0076 M CuCl$_2$ and 0.1 M NaOH

4.7 XRD patterns of CuO nanomaterial showing effect of amount of surfactant (PVP, K-30) (A) 0.5 g PVP, (B) 1 g PVP and (C) 1.5 g PVP

4.8 SEM images of CuO nanomaterial showing effect of amount of surfactant (PVP, K-30) (A) 0.5 g PVP, (B) 1 g PVP and (C) 1.5 g PVP

4.9 DLS results of CuO nanomaterial showing effect of amount of surfactant (PVP, K-30) (A) 0.5 g PVP, (B) 1 g PVP and (C) 1.5 g PVP

4.10 X-ray diffraction patterns of Fe$_2$O$_3$ nanoparticles

4.11 SEM images of Fe$_2$O$_3$ nanoparticles

4.12 Variation of density of nanofluid with concentration (volume %) of CuO in water

4.13 Variation of viscosity of nanofluid with concentration of CuO (volume %) in water

4.14 Variation of density of nanofluid with concentration (volume %) of Fe$_2$O$_3$ in water

4.15 Temperature versus time plot for solar energy absorption by using CuO (133 nm) nanofluid in water

4.16 Effect of particle concentration on efficiency of solar energy absorption for CuO (133 nm) nanofluid in water
4.17 Temperature versus time plot for solar energy absorption by using CuO (133 nm) nanofluid in ethylene glycol (MEG)

4.18 Temperature versus time plot for solar energy absorption by using CuO (133 nm) nanofluid in silicone oil

4.19 Temperature versus time plot for solar energy absorption by using Fe₂O₃ (300 nm) nanofluid in water

4.20 Effect of particle concentration on efficiency of solar energy absorption for Fe₂O₃ (300 nm) nanofluid in water

4.21 Temperature versus time plot for solar energy absorption by using Fe₂O₃ (300 nm) nanofluid in ethylene glycol (MEG)

4.22 Temperature versus time plot for solar energy absorption by using Fe₂O₃ (300 nm) nanofluid in silicone oil

4.23 Temperature versus time plot for solar desalination by using CuO nanomaterial (133 nm) in hard water

4.24 Effect of particle concentration on efficiency of solar water desalination for CuO nanomaterial (133 nm)

4.25 Temperature versus time plot for solar desalination by using CuO nanomaterial (133 nm) in sea water

4.26 Temperature versus time plot for solar desalination by using Fe₂O₃ nanoparticles (300 nm) in hard water

4.27 Effect of particle concentration on efficiency of solar water desalination for Fe₂O₃ nanoparticles (300 nm)

4.28 Temperature versus time plot for solar desalination by using Fe₂O₃ nanoparticles (300 nm) in sea water

5.1 XRD pattern of SiO₂ nanoparticles synthesized by Stober’s method (325 nm)

5.2 EDS analysis of SiO₂ nanoparticles synthesized by Stober’s method (325 nm)

5.3 FESEM images of SiO₂ nanoparticles synthesized by Stober’s method (325 nm)

5.4 EDS analysis of SiO₂ nanoparticles synthesized by microwave method (65 nm)
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>FESEM images of SiO$_2$ nanoparticles synthesized by microwave method (65 nm)</td>
</tr>
<tr>
<td>5.6</td>
<td>EDS analysis of SiO$_2$ nanoparticles synthesized by microwave method (23 nm)</td>
</tr>
<tr>
<td>5.7</td>
<td>FESEM images of SiO$_2$ nanoparticles synthesized by microwave method (23 nm)</td>
</tr>
<tr>
<td>5.8</td>
<td>XRD pattern of Ag-doped SiO$_2$ nanoparticles (23 nm)</td>
</tr>
<tr>
<td>5.9</td>
<td>FESEM images of Ag-doped SiO$_2$ nanoparticles (23 nm)</td>
</tr>
<tr>
<td>5.10</td>
<td>XRD pattern of ZnO quantum dots synthesized by colloidal route</td>
</tr>
<tr>
<td>5.11</td>
<td>FESEM images of ZnO quantum dots synthesized by colloidal route</td>
</tr>
<tr>
<td>5.12</td>
<td>EDS analysis of ZnO nanowires synthesized by hydrothermal method</td>
</tr>
<tr>
<td>5.13</td>
<td>SEM images of ZnO nanowires synthesized by hydrothermal method</td>
</tr>
<tr>
<td>5.14</td>
<td>XRD pattern of TiO$_2$ nanotubes synthesized by hydrothermal method</td>
</tr>
<tr>
<td>5.15</td>
<td>FESEM images of TiO$_2$ nanotubes synthesized by hydrothermal method</td>
</tr>
<tr>
<td>5.16</td>
<td>XRD pattern of TiO$_2$ nanowires synthesized by hydrothermal method</td>
</tr>
<tr>
<td>5.17</td>
<td>FESEM images of TiO$_2$ nanowires synthesized by hydrothermal method</td>
</tr>
<tr>
<td>5.18</td>
<td>XRD pattern of carbon-doped TiO$_2$ nanoparticles synthesized by hydrothermal method</td>
</tr>
<tr>
<td>5.19</td>
<td>FESEM images of carbon-doped TiO$_2$ nanoparticles synthesized by hydrothermal method</td>
</tr>
<tr>
<td>5.20</td>
<td>Variation of density of nanofluid with concentration (volume %) of SiO$_2$ (65 nm) in water</td>
</tr>
<tr>
<td>5.21</td>
<td>Variation of density of nanofluid with concentration (volume %) of ZnO QDs (10 nm) in water</td>
</tr>
<tr>
<td>5.22</td>
<td>Variation of density of nanofluid with concentration (volume %) of TiO$_2$ in water</td>
</tr>
</tbody>
</table>
5.23 Temperature versus time plot for solar energy absorption by using SiO₂ (23 nm) nanofluid in water
5.24 Effect of particle concentration on efficiency of solar energy absorption for SiO₂ (23 nm) nanofluid in water
5.25 Effect of particle size and doping on efficiency of solar energy absorption for SiO₂ nanofluid in water
5.26 Temperature versus time plot for solar energy absorption by using SiO₂ (different sizes) nanofluid in ethylene glycol (MEG)
5.27 Temperature versus time plot for solar energy absorption by using SiO₂ (different sizes) nanofluid in silicone oil
5.28 Temperature versus time plot for solar energy absorption by using ZnO QDs (10 nm) nanofluid in water
5.29 Effect of particle concentration on efficiency of solar energy absorption for ZnO QDs (10 nm) nanofluid in water
5.30 Temperature versus time plot for solar energy absorption by using ZnO QDs (10 nm) nanofluid in ethylene glycol (MEG)
5.31 Temperature versus time plot for solar energy absorption by using ZnO QDs (10 nm) nanofluid in silicone oil
5.32 Temperature versus time plot for solar energy absorption by using ZnO NWs (200 to 300 nm) nanofluid in water
5.33 Effect of particle concentration on efficiency of solar energy absorption for ZnO NWs (200 to 300 nm) nanofluid in water
5.34 Temperature versus time plot for solar energy absorption by using ZnO NWs (200 to 300 nm) nanofluid in ethylene glycol (MEG)
5.35 Temperature versus time plot for solar energy absorption by using ZnO NWs (200 to 300 nm) nanofluid in silicone oil
5.36 Temperature versus time plot for solar energy absorption by using TiO₂ Aerioxide® P25 (21 nm) nanofluid in water
5.37 Effect of particle concentration on efficiency of solar energy absorption for TiO₂ Aerioxide® P25 (21 nm) nanofluid in water
5.38 Temperature versus time plot for solar energy absorption by using TiO₂ Aerioxide® P25 (21 nm) nanofluid in ethylene glycol (MEG)
5.39 Temperature versus time plot for solar energy absorption by using TiO$_2$ Aeroxide® P25 (21 nm) nanofluid in silicone oil

5.40 Temperature versus time plot for solar energy absorption by using TiO$_2$ Aeroxide® P90 (14 nm) nanofluid in water

5.41 Effect of particle concentration on efficiency of solar energy absorption for TiO$_2$ Aeroxide® P90 (14 nm) nanofluid in water

5.42 Temperature versus time plot for solar energy absorption by using TiO$_2$ Aeroxide® P90 (14 nm) nanofluid in ethylene glycol (MEG)

5.43 Temperature versus time plot for solar energy absorption by using TiO$_2$ Aeroxide® P90 (14 nm) nanofluid in silicone oil

5.44 Temperature versus time plot for solar energy absorption by using TiO$_2$ NTs (12 to 29 nm diameter) nanofluid in water

5.45 Effect of particle concentration on efficiency of solar energy absorption for TiO$_2$ NTs (12 to 29 nm diameter) nanofluid in water

5.46 Temperature versus time plot for solar energy absorption by using TiO$_2$ NTs (12 to 29 nm diameter) nanofluid in ethylene glycol (MEG)

5.47 Temperature versus time plot for solar energy absorption by using TiO$_2$ NTs (12 to 29 nm diameter) nanofluid in silicone oil

5.48 Temperature versus time plot for solar energy absorption by using TiO$_2$ NWs (15 to 29 nm diameter) nanofluid in water

5.49 Effect of particle concentration on efficiency of solar energy absorption for TiO$_2$ NWs (15 to 29 nm diameter) nanofluid in water

5.50 Temperature versus time plot for solar energy absorption by using TiO$_2$ NWs (15 to 29 nm diameter) nanofluid in ethylene glycol (MEG)

5.51 Temperature versus time plot for solar energy absorption by using TiO$_2$ NWs (15 to 29 nm diameter) nanofluid in silicone oil

5.52 Temperature versus time plot for solar desalination by using SiO$_2$ nanoparticles (65 nm) in hard water

5.53 Effect of particle concentration on efficiency of solar water desalination for SiO$_2$ nanoparticles (65 nm)
5.54 Temperature versus time plot for solar desalination by using SiO$_2$ nanoparticles (23 nm) in hard water
5.55 Effect of particle concentration on efficiency of solar water desalination for SiO$_2$ nanoparticles (23 nm)
5.56 Temperature versus time plot for solar desalination by using ZnO QDs (10 nm) in hard water
5.57 Effect of particle concentration on efficiency of solar water desalination for ZnO QDs (10 nm)
5.58 Temperature versus time plot for solar desalination by using ZnO NWs (200 to 300 nm) in hard water
5.59 Effect of particle concentration on efficiency of solar water desalination for ZnO NWs (200 to 300 nm)
5.60 Temperature versus time plot for solar desalination by using TiO$_2$ Aerioxide® P25 (21 nm) in hard water
5.61 Effect of particle concentration on efficiency of solar water desalination for TiO$_2$ Aerioxide® P25 (21 nm)
5.62 Temperature versus time plot for solar desalination by using TiO$_2$ Aerioxide® P25 (21 nm) in sea water
5.63 Temperature versus time plot for solar desalination by using TiO$_2$ Aerioxide® P90 (14 nm) in hard water
5.64 Effect of particle concentration on efficiency of solar water desalination for TiO$_2$ Aerioxide® P90 (14 nm)
5.65 Temperature versus time plot for solar desalination by using TiO$_2$ NTs (12 to 29 nm diameter) in hard water
5.66 Effect of particle concentration on efficiency of solar water desalination for TiO$_2$ NTs (12 to 29 nm diameter)
5.67 Temperature versus time plot for solar desalination by using TiO$_2$ NTs (12 to 29 nm diameter) in sea water
5.68 Temperature versus time plot for solar desalination by using TiO$_2$ NWs (15 to 29 nm diameter) in hard water
5.69 Effect of particle concentration on efficiency of solar water desalination for TiO$_2$ NWs (15 to 29 nm diameter)
Temperature versus time plot for solar desalination by using TiO$_2$ NWs (15 to 29 nm diameter) in sea water

EDS analysis of carbon nanoparticles synthesized by hydrothermal method (325 nm)

FESEM images of carbon nanoparticles synthesized by hydrothermal method (325 nm)

EDS analysis of carbon nanoparticles synthesized by hydrothermal method (65 nm)

FESEM images of carbon nanoparticles synthesized by hydrothermal method (65 nm)

EDS analysis of carbon nanoparticles obtained commercially (30 nm)

FESEM images of carbon nanoparticles obtained commercially (30 nm)

Variation of density of nanofluid with concentration (volume %) of carbon (30 nm) in water

Temperature versus time plot for solar energy absorption by using carbon (30 nm) nanofluid in water

Effect of particle concentration on efficiency of solar energy absorption for carbon (30 nm) nanofluid in water

Temperature versus time plot for solar energy absorption by nanofluids containing different size carbon nanoparticles in water

Effect of size of nanoparticles on efficiency of solar energy absorption for carbon nanofluid in water

Temperature versus time plot for solar energy absorption by using carbon (30 nm) nanofluid in ethylene glycol (MEG)

Temperature versus time plot for solar energy absorption by nanofluids containing different size carbon nanoparticles in MEG

Effect of size of nanoparticles on efficiency of solar energy absorption for carbon nanofluid in MEG

Temperature versus time plot for solar energy absorption by using carbon (30 nm) nanofluid in silicone oil
6.16 Temperature versus time plot for solar energy absorption by nanofluids containing different size carbon nanoparticles in silicone oil

6.17 Effect of size of nanoparticles on efficiency of solar energy absorption for carbon nanofluid in silicone oil

6.18 Temperature versus time plot for solar desalination by using carbon nanoparticles (30 nm) in hard water

6.19 Effect of particle concentration on efficiency of solar water desalination for carbon nanoparticles (30 nm)

6.20 Temperature versus time plot for solar desalination by using carbon nanoparticles (30 nm) in sea water