Plate-1: Photographs of *Sida glutinosa*
Plate-2: Photographs of *Neanotis wightiana*
Plate-3: Photographs of *Ichnocarpus frutescens*

Scheme-1.1: Probable biosynthetic route of 20-hydroxyecdysone
Scheme-1.2: Probable mass fragmentation of 247
Scheme-1.3: FAB-Mass fragmentation of 248
Scheme-1.4: Probable EI-MS fragmentation of alkaloid 249
Scheme-2.1: FAB-Mass fragmentation of compound 97
Scheme-2.2: FAB-Mass fragmentation of compound 99

Table 1.1: List of phytochemicals from different *Sida* species.
Table 1.2: List of some new typical flavonol glycosides reported during the last five years (since 2008) with plant source.
Table 1.3: List of naturally occurring new Phytoecdysteroids reported since 1999.
Table 1.4. 1H-(600 MHz) and 13C-(150 MHz) NMR Spectral data of glutinoside (247) in CD$_3$OD (δ in ppm).
Table 1.5. 1H-(300 MHz) and 13C-(75 MHz) NMR Spectral data of compound 248 in CD$_3$OD (δ in ppm).
Table 1.6. 1H-(400 MHz) and 13C-(100 MHz) NMR Spectral data of compound 249 in CD$_3$OD (δ in ppm).
Table 1.7. Percentage of inhibition (%) of compounds 247, 248, 250 μg/mL against DPPH in *in vitro* assay.
Table 2.1: List of phytochemicals from different *Hedyotis* species.
Table 2.2: List of bayogenin saponins with plant source. II – 10

Table 2.3. 1H (600 MHz) and 13C-(150 MHz) NMR spectral data of neanoside A (97) in CD$_3$OD (δ in ppm). II – 35

Table 2.4. 1H-(600 MHz) and 13C-(150 MHz) NMR Spectral data of compound NW-2 (99) in DMSO-d_6 (δ in ppm). II – 53

Table 2.5. 1H-(400 MHz) and 13C-(100 MHz) NMR Spectral data of compound NW-3 (100) in DMSO-d_6 (δ in ppm). II – 66

Table 2.6. Biochemical analysis of serum enzymes by neanoside A (97). II – 86

Table 2.7. Biochemical analysis of serum enzymes by 3a-hydroxy olean-12-en-27-oic acid (99, HOA) and stigmasterol glucoside (100, SG).

Table 3.1: List of phytochemicals reported from different Ichnocarpus species. III – 2

Table 3.2. DPPH Scavenging Activity (% of inhibition) of the Fractions of MeOH extract of Ichnocarpus frutescens Roots and BHT (control). III – 24

Table 3.3. In vitro antioxidant activity of different fractions of methanol extract and BHT. III – 25

FIGURE SUBJECT PAGE NO.

Fig. 1.1: Basic structures of different classes of flavonoids. I – 24

Fig. 1.2: Structures of common hydroxylated flavonol aglycones. I – 26

Fig. 1.3: Structure of 20-Hydroxyecdysone (158). I – 45

Fig. 1.4: The UV spectrum of glutinoside (247) in MeOH. I – 76

Fig. 1.5: The IR spectrum of glutinoside (247) in KBr. I – 77

Fig. 1.6: The 600 MHz 1H-NMR spectrum of glutinoside (247) in CD$_3$OD. I – 78

Fig. 1.6a: The 600 MHz 1H-NMR spectrum (expanded) of glutinoside (247) in CD$_3$OD. I – 79

Fig. 1.6b: The 600 MHz 1H-NMR spectrum (expanded) of glutinoside (247) in CD$_3$OD. I – 80

Natural Products Chemistry