<table>
<thead>
<tr>
<th>PART-I: CHEMICAL CONSTITUENTS OF SIDA GLUTINOSA</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1: A brief review of phytochemicals reported from different Sida species.</td>
<td>1–23</td>
</tr>
<tr>
<td>Section 2: A brief review of naturally occurring flavonol glycosides reported in last five years.</td>
<td>24–44</td>
</tr>
<tr>
<td>Section 3: A brief review of phytoecdysteroids reported from different plant families.</td>
<td>45–68</td>
</tr>
<tr>
<td>Section 4: Brief history and taxonomical description and classification of Sida glutinosa.</td>
<td>69–70</td>
</tr>
<tr>
<td>Section 5: Isolation and structure elucidation of glutinoside.</td>
<td>71–85</td>
</tr>
<tr>
<td>Section 6: Isolation and structure elucidation of 24(28)-dehydromakisterone A.</td>
<td>86–100</td>
</tr>
<tr>
<td>Section 7: Isolation and structure elucidation of 1,2,3,9-tetrahydropyrrolo[2,1-b]-quinazolin-3-amine.</td>
<td>101–120</td>
</tr>
<tr>
<td>Section 8: Antioxidant activity of compounds from Sida glutinosa.</td>
<td>121–123</td>
</tr>
<tr>
<td>References</td>
<td>124–133</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART-II: CHEMICAL CONSTITUENTS OF NEANOTIS WIGHTIANA</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1: A brief review of phytochemicals reported from different Neanotis species.</td>
<td>1–8</td>
</tr>
<tr>
<td>Section 2: A brief review of bayogenin saponins.</td>
<td>9–27</td>
</tr>
<tr>
<td>Section 3: Brief history and taxonomical description and classification of Neanotis wightiana.</td>
<td>28–29</td>
</tr>
</tbody>
</table>
PART-III: CHEMICAL CONSTITUENTS OF *ICHNOCARPUS FRUTESCENS*

Section 1: A brief review of phytochemicals reported from different *Ichnocarpus* species.
Section 2: Brief history and taxonomical description and classification of *Ichnocarpus frutescens*.
Section 3: Isolation and structure elucidation of 2-hydroxy tricosanoic acid.
Section 4: Antioxidant activities of the sub-fractions of MeOH extract of *I. Frutescens* roots.

PART IV: EXPERIMENTAL

Experimental details of isolation and chemical reactions of all the isolated compounds from *S. glutinosa*, *N. wightiana* and *I. frutescens*.

PUBLICATIONS
TABLE SUBJECT PAGE NO.
Table 1.1: List of phytochemicals from different *Sida* species. I – 2
Table 1.2: List of some new typical flavonol glycosides reported during the last five years (since 2008) with plant source. I – 29
Table 1.3: List of naturally occurring new Phytoecdysteroids reported since 1999. I – 48
Table 1.4. 1H-(600 MHz) and 13C-(150 MHz) NMR Spectral data of glutinoside (247) in CD$_3$OD (δ in ppm). I – 75
Table 1.5. 1H-(300 MHz) and 13C-(75 MHz) NMR Spectral data of compound 248 in CD$_3$OD (δ in ppm). I – 89
Table 1.6. 1H-(400 MHz) and 13C-(100 MHz) NMR Spectral data of compound 249 in CD$_3$OD (δ in ppm). I – 104
Table 1.7. Percentage of inhibition (%) of compounds 247, 248, 250 and BHT in the concentration range 500 µg/mL – 100 µg/mL against DPPH in *in vitro* assay. I – 123
Table 2.1: List of phytochemicals from different *Hedyotis* species. II – 2
Table 2.2: List of bayogenin saponins with plant source.

Table 2.3. 1H (600 MHz) and ^{13}C-(150 MHz) NMR spectral data of neanoside A (97) in CD$_3$OD (δ in ppm).

Table 2.4. 1H-(600 MHz) and ^{13}C-(150 MHz) NMR Spectral data of compound NW-2 (99) in DMSO-d_6 (δ in ppm).

Table 2.5. 1H-(400 MHz) and ^{13}C-(100 MHz) NMR Spectral data of compound NW-3 (100) in DMSO-d_6 (δ in ppm).

Table 2.6. Biochemical analysis of serum enzymes by neanoside A (97).

Table 2.7. Biochemical analysis of serum enzymes by 3α-hydroxyolean-12-en-27-oic acid (99, HOA) and stigmasterol glucoside (100, SG).

Table 3.1: List of phytochemicals reported from different Ichnocarpus species.

Table 3.2. DPPH Scavenging Activity (% of inhibition) of the Fractions of MeOH extract of Ichnocarpus frutescens Roots and BHT (control).

Table 3.3. In vitro antioxidant activity of different fractions of methanol extract and BHT.

FIGURE SUBJECT PAGE NO.

Fig. 1.1: Basic structures of different classes of flavonoids. I – 24

Fig. 1.2: Structures of common hydroxylated flavonol aglycones. I – 26

Fig. 1.3: Structure of 20-Hydroxyecdysone (158). I – 45

Fig. 1.4: The UV spectrum of glutinoside (247) in MeOH. I – 76

Fig. 1.5: The IR spectrum of glutinoside (247) in KBr. I – 77

Fig. 1.6: The 600 MHz 1H-NMR spectrum of glutinoside (247) in CD$_3$OD. I – 78

Fig. 1.6a: The 600 MHz 1H-NMR spectrum (expanded) of glutinoside (247) in CD$_3$OD. I – 79

Fig. 1.6b: The 600 MHz 1H-NMR spectrum (expanded) of glutinoside (247) in CD$_3$OD. I – 80
Fig. 1.7: The 150 MHz 13C-NMR spectrum of glutinoside (247) in CD$_3$OD.

Fig. 1.7a: The 150 MHz 13C-NMR spectrum (expanded) of glutinoside (247) in CD$_3$OD.

Fig. 1.7b: The 150 MHz 13C-NMR spectrum (expanded) of glutinoside (247) in CD$_3$OD.

Fig. 1.7c: The 150 MHz 13C/DEPT-NMR spectrum (expanded) of glutinoside (247) in CD$_3$OD.

Fig. 1.8: The key HMBC correlation of glutinoside (247)

Fig. 1.9: The FAB-Mass spectrum of glutinoside (247).

Fig. 1.10: Structures of compounds 247, 247a and 247b.

Fig. 1.11: The UV spectrum of compound 248 in MeOH.

Fig. 1.12: The IR spectrum of compound 248 in KBr.

Fig. 1.13: The 600 MHz 1H-NMR spectrum of compound 248 in CD$_3$OD.

Fig. 1.13a: The 600 MHz 1H-NMR spectrum (expanded) of compound 248 in CD$_3$OD.

Fig. 1.14: The 150 MHz 13C-NMR spectrum of compound 248 in CD$_3$OD.

Fig. 1.14a: The 150 MHz 13C-NMR spectrum (expanded) of compound 248 in CD$_3$OD.

Fig. 1.14b: The 13C/DEPT-NMR spectrum of compound 248 in CD$_3$OD.

Fig. 1.14c: The 150 MHz 13C/DEPT-NMR spectrum (expanded) of compound 248 in CD$_3$OD.

Fig. 1.14d: The 150 MHz 13C/DEPT-NMR spectrum (expanded) of compound 248 in CD$_3$OD.

Fig. 1.14e: The 150 MHz 13C/DEPT-NMR spectrum (expanded) of compound 248 in CD$_3$OD.

Fig. 1.15: The FAB-Mass spectrum of compound 248.

Fig. 1.16: Structure of compound 248.

Fig. 1.17: The UV spectrum of compound 249 in MeOH.

Fig. 1.18: The IR spectrum of compound 249 in KBr.
Fig. 1.19: The 400 MHz 1H-NMR spectrum of compound 249 in CD$_3$OD.

Fig. 1.19a: The 400 MHz 1H-NMR spectrum (expanded) of compound 249 in CD$_3$OD.

Fig. 1.20: The 100 MHz 13C-NMR spectrum of compound 249 in CD$_3$OD.

Fig. 1.20a: The 100 MHz 13C-NMR spectrum (expanded) of compound 249 in CD$_3$OD.

Fig. 1.20b: The 100 MHz 13C-NMR spectrum (expanded) of compound 249 in CD$_3$OD.

Fig. 1.20c: The 13C/DEPT-NMR spectrum of compound 249 in CD$_3$OD.

Fig. 1.20d: The 13C/DEPT-NMR spectrum (expanded) of compound 249 in CD$_3$OD.

Fig. 1.21: ROESY-NMR spectrum of compound 249 in CD$_3$OD.

Fig. 1.21a: ROESY-NMR spectrum (expanded) of compound 249 in CD$_3$OD.

Fig. 1.22: HMBC-NMR spectrum of compound 249 in CD$_3$OD.

Fig. 1.22a: HMBC-NMR spectrum (expanded) of compound 249 in CD$_3$OD.

Fig. 1.23: HMQC-NMR spectrum of compound 249 in CD$_3$OD.

Fig. 1.24: 1H-1H-COSY-NMR spectrum of compound 249 in CD$_3$OD.

Fig. 1.25: The EI-MS spectrum of compound 249.

Fig. 1.26: Structures of compounds 249 and 249a as well as selected HMBC correlations in 249.

Fig. 1.27: Structures of compounds 247, 248, 250 and 251.

Fig. 1.28: Free radical scavenging activity of compound 247, 248, 250 and BHT.
Fig. 1.29: Bars showing the IC\textsubscript{50} (µg/mL) of compounds 247, 248, 250 and BHT.

Fig. 2.1: The IR spectrum of neanoside A (97) in KBr. II – 36

Fig. 2.2: The 600 MHz 1H-NMR spectrum of neanoside A (97) in CD\textsubscript{3}OD. II – 37

Fig. 2.2a: The 600 MHz 1H-NMR spectrum (expanded) of neanoside A (97) in CD\textsubscript{3}OD. II – 38

Fig. 2.2b: The 600 MHz 1H-NMR spectrum (expanded) of neanoside A (97) in CD\textsubscript{3}OD. II – 39

Fig. 2.2c: The 600 MHz 1H-NMR spectrum (expanded) of neanoside A (97) in CD\textsubscript{3}OD. II – 40

Fig. 2.3: The 150 MHz 13C-NMR spectrum of neanoside A (97) in CD\textsubscript{3}OD. II – 41

Fig. 2.3a: The 150 MHz 13C-NMR spectrum (expanded) of neanoside A (97) in CD\textsubscript{3}OD. II – 42

Fig. 2.3b: The 150 MHz 13C-NMR spectrum (expanded) of neanoside A (97) in CD\textsubscript{3}OD. II – 43

Fig. 2.3c: The 150 MHz 13C-NMR spectrum (expanded) of neanoside A (97) in CD\textsubscript{3}OD. II – 44

Fig. 2.3d: The 150 MHz 13C-NMR spectrum (expanded) of neanoside A (97) in CD\textsubscript{3}OD. II – 45

Fig. 2.3e: The 13C/DEPT-NMR spectrum of neanoside A (97) in CD\textsubscript{3}OD. II – 46

Fig. 2.3f: The 13C/DEPT-NMR spectrum (expanded) of neanoside A (97) in CD\textsubscript{3}OD. II – 47

Fig. 2.3g: The 13C/DEPT-NMR spectrum (expanded) of neanoside A (97) in CD\textsubscript{3}OD. II – 48

Fig. 2.4: The key HMBC and NOESY correlation of neanoside A (97). II – 33

Fig. 2.5: The FAB-Mass spectrum of neanoside A (97). II – 49

Fig. 2.6: Structures of compounds 97 and 98. II – 33

Fig. 2.7: The IR spectrum of compound 99 in KBr. II – 54
Fig. 2.8: The 600 MHz 1H-NMR spectrum of compound 99 in DMSO-d_6.

Fig. 2.8a: The 600 MHz 1H-NMR spectrum (expanded) of compound 99 in DMSO-d_6.

Fig. 2.9: The 150 MHz 13C-NMR spectrum of compound 99 in DMSO-d_6.

Fig. 2.9a: The 150 MHz 13C-NMR spectrum (expanded) of compound 99 in DMSO-d_6.

Fig. 2.9b: The 13C/DEPT-NMR spectrum of compounds 99 in DMSO-d_6.

Fig. 2.9c: The 13C/DEPT-NMR spectrum (expanded) of compound 99 in DMSO-d_6.

Fig. 2.9d: The 13C/DEPT-NMR spectrum (expanded) of compound 99 in DMSO-d_6.

Fig. 2.10: The EI-Mass spectrum of compounds 99.

Fig. 2.11: Structure of compound 99.

Fig. 2.12: The IR spectrum of compound 100 in KBr.

Fig. 2.13: The 400 MHz 1H-NMR spectrum of compound 100 in C$_5$D$_5$N.

Fig. 2.13a: The 400 MHz 1H-NMR spectrum (expanded) of compound 100 in C$_5$D$_5$N.

Fig. 2.13b: The 400 MHz 1H-NMR spectrum (expanded) of compound 100 in C$_5$D$_5$N.

Fig. 2.14: The 100 MHz 13C-NMR spectrum of compound 100 in C$_5$D$_5$N.

Fig. 2.14a: The 100 MHz 13C-NMR spectrum (expanded) of compound 100 in C$_5$D$_5$N.

Fig. 2.14b: The 100 MHz 13C-NMR spectrum (expanded) of compound 100 in C$_5$D$_5$N.

Fig. 2.14c: The 13C/DEPT-NMR spectrum of compound 100 in C$_5$D$_5$N.

Fig. 2.14d: The 13C/DEPT-NMR spectrum (expanded) of compound 100 in C$_5$D$_5$N.
Fig. 2.14e: The 13C/DEPT-NMR spectrum (expanded) of compound 100 in C$_5$D$_5$N.

Fig. 2.14f: The 13C/DEPT-NMR spectrum (expanded) of compound 100 in C$_5$D$_5$N.

Fig. 2.15: HMBC-NMR spectrum of compound 100 in C$_5$D$_5$N.

Fig. 2.16: HMQC-NMR spectrum of compound 100 in C$_5$D$_5$N.

Fig. 2.16a: HMQC-NMR spectrum (expanded) of compound 100 in C$_5$D$_5$N.

Fig. 2.17: The FAB-Mass spectrum of compound 100.

Fig. 2.18: Structure of compound 100.

Fig. 2.19: Enzyme inhibition activity of compound 97 and Atorvastatin at different concentrations.

Fig. 2.20: Enzyme inhibition activity of compound 99 and Atorvastatin at different concentrations.

Fig. 2.21: Enzyme inhibition activity of compound 100 and Atorvastatin at different concentrations.

Fig. 3.1: The IR spectrum of compound 33 in KBr.

Fig. 3.2: The 600 MHz 1H-NMR spectrum of compound 33 in CDCl$_3$.

Fig. 3.2a: The 600 MHz 1H-NMR spectrum (expanded) of compound 33 in CDCl$_3$.

Fig. 3.3: The 150 MHz 13C-NMR spectrum of compound 33 in CDCl$_3$.

Fig. 3.3a: The 150 MHz 13C-NMR spectrum (expanded) of compounds 33 in CDCl$_3$.

Fig. 3.4: The EI-MS spectrum of compounds 33.

Fig. 3.5: Structure of compound 33.

Fig. 3.6: Scavenging activity of various extract fractions and BHT (control) on DPPH at the concentration of 10, 60 and 100 mg/mL.