<table>
<thead>
<tr>
<th>FIGURE</th>
<th>SUBJECT</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1:</td>
<td>Skeletons and ring designations of flavonoids</td>
<td>53 – 54</td>
</tr>
<tr>
<td>Fig. 1.2:</td>
<td>UV spectrum of vите cetin (223) in MeOH</td>
<td>66</td>
</tr>
<tr>
<td>Fig. 1.3:</td>
<td>IR spectrum of vите cetin (223) in KBr</td>
<td>67</td>
</tr>
<tr>
<td>Fig. 1.4:</td>
<td>1H-NMR spectrum of vите cetin (223) in DMSO-d_6</td>
<td>68</td>
</tr>
<tr>
<td>Fig. 1.4a:</td>
<td>1H-NMR spectrum (expanded) of vите cetin (223) in DMSO-d_6</td>
<td>69</td>
</tr>
<tr>
<td>Fig. 1.5:</td>
<td>13C-NMR spectrum of vите cetin (223) in DMSO-d_6</td>
<td>70</td>
</tr>
<tr>
<td>Fig. 1.5a:</td>
<td>13C-NMR spectrum (expanded) of vите cetin (223) in DMSO-d_6</td>
<td>71</td>
</tr>
<tr>
<td>Fig. 1.5b:</td>
<td>13C-NMR spectrum (expanded) of vите cetin (223) in DMSO-d_6</td>
<td>72</td>
</tr>
<tr>
<td>Fig. 1.5c:</td>
<td>13C-DEPT NMR spectrum of vите cetin (223) in DMSO-d_6</td>
<td>73</td>
</tr>
<tr>
<td>Fig. 1.6:</td>
<td>Structures of compounds 223, 224 and selected HMBC and NOESY correlations in 223</td>
<td>65</td>
</tr>
<tr>
<td>Fig. 1.7:</td>
<td>HMBC NMR spectrum of vите cetin (223) in DMSO-d_6</td>
<td>74</td>
</tr>
<tr>
<td>Fig. 1.7a:</td>
<td>HMBC NMR spectrum (expanded) of vите cetin (223) in DMSO-d_6</td>
<td>75</td>
</tr>
<tr>
<td>Fig. 1.7b:</td>
<td>HMBC NMR spectrum (expanded) of vите cetin (223) in DMSO-d_6</td>
<td>76</td>
</tr>
<tr>
<td>Fig. 1.7c:</td>
<td>HMBC NMR spectrum (expanded) of vите cetin (223) in DMSO-d_6</td>
<td>77</td>
</tr>
<tr>
<td>Fig. 1.8:</td>
<td>HSQC NMR spectrum of vите cetin (223) in DMSO-d_6</td>
<td>78</td>
</tr>
<tr>
<td>Fig. 1.8a:</td>
<td>HSQC NMR spectrum (expanded) of vitecetin (223) in DMSO-d_6</td>
<td>79</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>Fig. 1.9:</td>
<td>FAB-MS spectra of vitecetin (223)</td>
<td>80</td>
</tr>
<tr>
<td>Fig. 1.10:</td>
<td>Effect of vitecetin (223) on L. donovani promastigote viability by MTT assay</td>
<td>82</td>
</tr>
<tr>
<td>Fig. 1.11:</td>
<td>Effect of vitecetin (223) on L. donovani intracellular amastigotes and cytotoxicity of THP-1 cells</td>
<td>83</td>
</tr>
<tr>
<td>Fig. 1.12:</td>
<td>Vitecetin mediated antileishmanial activity via NO generation and iNOS2 expression in L. donovani infected macrophages</td>
<td>84</td>
</tr>
<tr>
<td>Fig. 1.13:</td>
<td>UV spectrum of compound 225 in MeOH</td>
<td>90</td>
</tr>
<tr>
<td>Fig. 1.14:</td>
<td>IR spectrum of compound 225 in KBr</td>
<td>91</td>
</tr>
<tr>
<td>Fig. 1.15:</td>
<td>1H-NMR spectrum of compound 225 in DMSO-d_6</td>
<td>92</td>
</tr>
<tr>
<td>Fig. 1.15a:</td>
<td>1H-NMR spectrum (expanded) of compound 225 in DMSO-d_6</td>
<td>93</td>
</tr>
<tr>
<td>Fig. 1.15b:</td>
<td>1H-NMR spectrum (expanded) of compound 225 in DMSO-d_6</td>
<td>94</td>
</tr>
<tr>
<td>Fig. 1.16:</td>
<td>13C-NMR spectrum of compound 225 in DMSO-d_6</td>
<td>95</td>
</tr>
<tr>
<td>Fig. 1.16a:</td>
<td>13C-NMR spectrum (expanded) of compound 225 in DMSO-d_6</td>
<td>96</td>
</tr>
<tr>
<td>Fig. 1.16b:</td>
<td>13C-DEPT NMR spectrum of compound 225 in DMSO-d_6</td>
<td>97</td>
</tr>
<tr>
<td>Fig. 1.16c:</td>
<td>HMQC NMR spectrum of compound 225 in DMSO-d_6</td>
<td>98</td>
</tr>
<tr>
<td>Fig. 1.17:</td>
<td>Structures of compounds 225 – 227 and selected NOESY correlations in 225</td>
<td>88</td>
</tr>
<tr>
<td>Fig. 1.18:</td>
<td>FAB-MS of compound 225</td>
<td>99</td>
</tr>
<tr>
<td>Fig. 1.19:</td>
<td>UV spectrum of vitexin (228) in MeOH</td>
<td>104</td>
</tr>
<tr>
<td>Fig. 1.20:</td>
<td>IR spectrum of vitexin (228) in KBr</td>
<td>105</td>
</tr>
<tr>
<td>Fig. 1.21:</td>
<td>1H-NMR spectrum of vitexin (228) in DMSO-d_6</td>
<td>106</td>
</tr>
<tr>
<td>Fig. 1.21a:</td>
<td>1H-NMR spectrum (expanded) of vitexin (228) in DMSO-d_6</td>
<td>107</td>
</tr>
<tr>
<td>Fig. 1.21b:</td>
<td>1H-NMR spectrum (expanded) of vitexin (228) in DMSO-d_6</td>
<td>108</td>
</tr>
<tr>
<td>Fig. 1.22:</td>
<td>13C-NMR spectrum of vitexin (228) in DMSO-d_6</td>
<td>109</td>
</tr>
<tr>
<td>Fig. 1.22a:</td>
<td>13C-NMR spectrum (expanded) of vitexin (228) in DMSO-d_6</td>
<td>110</td>
</tr>
<tr>
<td>Fig. 1.22b:</td>
<td>13C-DEPT NMR spectrum of vitexin (228) in DMSO-d_6</td>
<td>111</td>
</tr>
<tr>
<td>Fig. 1.23:</td>
<td>FAB-MS of vitexin (228)</td>
<td>112</td>
</tr>
<tr>
<td>Fig. 1.24:</td>
<td>Structure of compound 228</td>
<td>101</td>
</tr>
<tr>
<td>Fig. 1.25:</td>
<td>IR spectrum of 2α-hydroxyursolic acid (229) in KBr</td>
<td>116</td>
</tr>
<tr>
<td>Fig. 1.26:</td>
<td>1H-NMR spectrum of 2α-hydroxyursolic acid (229) in C$_3$D$_5$N</td>
<td>117</td>
</tr>
<tr>
<td>Fig. 1.26a:</td>
<td>1H-NMR spectrum (expanded) of 2α-hydroxyursolic acid (229) in C$_3$D$_5$N</td>
<td>118</td>
</tr>
<tr>
<td>Fig. 1.26b:</td>
<td>1H-NMR spectrum (expanded) of 2α-hydroxyursolic acid (229) in C$_3$D$_5$N</td>
<td>119</td>
</tr>
<tr>
<td>Fig. 1.26c:</td>
<td>1H-NMR spectrum (expanded) of 2α-hydroxyursolic acid (229) in C$_3$D$_5$N</td>
<td>120</td>
</tr>
<tr>
<td>Fig. 1.27:</td>
<td>13C-NMR spectrum of 2α-hydroxyursolic acid (229) in C$_5$D$_5$N</td>
<td>121</td>
</tr>
<tr>
<td>Fig. 1.27a:</td>
<td>13C-NMR spectrum (expanded) of 2α-hydroxyursolic acid (229) in C$_5$D$_5$N</td>
<td>122</td>
</tr>
<tr>
<td>Fig. 1.27b:</td>
<td>13C-DEPT NMR spectrum of 2α-hydroxyursolic acid (229) in C$_5$D$_5$N</td>
<td>123</td>
</tr>
<tr>
<td>Fig. 1.28:</td>
<td>ESI-MS of 2α-hydroxyursolic acid (229)</td>
<td>124</td>
</tr>
<tr>
<td>Fig. 1.29:</td>
<td>Structure of 2α-hydroxyursolic acid (229)</td>
<td>115</td>
</tr>
<tr>
<td>Fig. 2.1:</td>
<td>IR spectrum of compound 26 in KBr</td>
<td>149</td>
</tr>
<tr>
<td>Fig. 2.2:</td>
<td>1H-NMR spectrum of compound 26 in C$_5$D$_5$N</td>
<td>150</td>
</tr>
<tr>
<td>Fig. 2.2a:</td>
<td>1H-NMR spectrum (expanded) of compound 26 in C$_5$D$_5$N</td>
<td>151</td>
</tr>
<tr>
<td>Fig. 2.2b:</td>
<td>1H-NMR spectrum (expanded) of compound 26 in C$_5$D$_5$N</td>
<td>152</td>
</tr>
<tr>
<td>Fig. 2.2c:</td>
<td>1H-NMR spectrum (expanded) of compound 26 in C$_5$D$_5$N</td>
<td>153</td>
</tr>
<tr>
<td>Fig. 2.3:</td>
<td>13C-NMR spectrum of compound 26 in C$_5$D$_5$N</td>
<td>154</td>
</tr>
<tr>
<td>Fig. 2.3a:</td>
<td>13C-DEPT NMR spectrum of compound 26 in C$_5$D$_5$N</td>
<td>155</td>
</tr>
<tr>
<td>Fig. 2.3b:</td>
<td>13C-DEPT NMR spectrum (expanded) of compound 26 in C$_5$D$_5$N</td>
<td>156</td>
</tr>
<tr>
<td>Fig. 2.4:</td>
<td>HSQC NMR spectrum of compound 26 in C$_5$D$_5$N</td>
<td>157</td>
</tr>
<tr>
<td>Fig. 2.4a:</td>
<td>HSQC NMR spectrum (expanded) of compound 26 in C$_5$D$_5$N</td>
<td>158</td>
</tr>
<tr>
<td>Fig. 2.4b:</td>
<td>HSQC NMR spectrum (expanded) of compound 26 in C$_5$D$_5$N</td>
<td>159</td>
</tr>
<tr>
<td>Fig. 2.4c:</td>
<td>HSQC NMR spectrum (expanded) of compound 26 in C$_5$D$_5$N</td>
<td>160</td>
</tr>
<tr>
<td>Figure/Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>Structure of compound 26 and its selected HMBC and NOESY correlations</td>
<td>148</td>
</tr>
<tr>
<td>Fig. 2.6</td>
<td>FAB-MS of compound 26</td>
<td>161</td>
</tr>
<tr>
<td>Fig. 2.7</td>
<td>IR spectrum of meyanthic acid (27) in KBr</td>
<td>167</td>
</tr>
<tr>
<td>Fig. 2.8</td>
<td>1H-NMR spectrum of meyanthic acid (27) in C$_5$D$_5$N</td>
<td>168</td>
</tr>
<tr>
<td>Fig. 2.8a</td>
<td>1H-NMR spectrum (expanded) of meyanthic acid (27) in C$_5$D$_5$N</td>
<td>169</td>
</tr>
<tr>
<td>Fig. 2.8b</td>
<td>1H-NMR spectrum (expanded) of meyanthic acid (27) in C$_5$D$_5$N</td>
<td>170</td>
</tr>
<tr>
<td>Fig. 2.8c</td>
<td>1H-NMR spectrum (expanded) of meyanthic acid (27) in C$_5$D$_5$N</td>
<td>171</td>
</tr>
<tr>
<td>Fig. 2.9</td>
<td>13C-NMR spectrum of meyanthic acid (27) in C$_5$D$_5$N</td>
<td>172</td>
</tr>
<tr>
<td>Fig. 2.9a</td>
<td>13C-NMR spectrum (expanded) of meyanthic acid (27) in C$_5$D$_5$N</td>
<td>173</td>
</tr>
<tr>
<td>Fig. 2.9b</td>
<td>13C-NMR spectrum (expanded) of meyanthic acid (27) in C$_5$D$_5$N</td>
<td>174</td>
</tr>
<tr>
<td>Fig. 2.9c</td>
<td>13C-DEPT NMR spectrum of meyanthic acid (27) in C$_5$D$_5$N</td>
<td>175</td>
</tr>
<tr>
<td>Fig. 2.9d</td>
<td>13C-DEPT NMR spectrum (expanded) of meyanthic acid (27) in C$_5$D$_5$N</td>
<td>176</td>
</tr>
<tr>
<td>Fig. 2.9e</td>
<td>13C-DEPT NMR spectrum (expanded) of meyanthic acid (27) in C$_5$D$_5$N</td>
<td>177</td>
</tr>
<tr>
<td>Fig. 2.10</td>
<td>HISSC NMR spectrum of meyanthic acid (27) in C$_5$D$_5$N</td>
<td>178</td>
</tr>
<tr>
<td>Fig. 2.10a</td>
<td>HSSC NMR spectrum (expanded) of meyanthic acid (27) in C$_5$D$_5$N</td>
<td>179</td>
</tr>
<tr>
<td>Fig. 2.10b:</td>
<td>HSQC NMR spectrum (expanded) of meyanthiac acid (27) in C$_5$D$_3$N</td>
<td>180</td>
</tr>
<tr>
<td>Fig. 2.10c:</td>
<td>HSQC NMR spectrum (expanded) of meyanthiac acid (27) in C$_5$D$_3$N</td>
<td>181</td>
</tr>
<tr>
<td>Fig. 2.10d:</td>
<td>HSQC NMR spectrum (expanded) of meyanthiac acid (27) in C$_5$D$_3$N</td>
<td>182</td>
</tr>
<tr>
<td>Fig. 2.11:</td>
<td>Structure of compound 27 and its selected HMBC and NOESY correlations</td>
<td>165</td>
</tr>
<tr>
<td>Fig. 2.12:</td>
<td>FAB-MS of meyanthiac acid (27)</td>
<td>183</td>
</tr>
<tr>
<td>Fig. 2.13:</td>
<td>IR spectrum of myricyl pentadecanoate (28) in KBr</td>
<td>187</td>
</tr>
<tr>
<td>Fig. 2.14:</td>
<td>1H-NMR spectrum of myricyl pentadecanoate (28) in CDCl$_3$</td>
<td>188</td>
</tr>
<tr>
<td>Fig. 2.15:</td>
<td>13C-NMR spectrum of myricyl pentadecanoate (28) in CDCl$_3$</td>
<td>189</td>
</tr>
<tr>
<td>Fig. 2.15a:</td>
<td>13C-DEPT NMR spectrum of myricyl pentadecanoate (28) in CDCl$_3$</td>
<td>190</td>
</tr>
<tr>
<td>Fig. 2.16:</td>
<td>FAB-MS of myricyl pentadecanoate (28)</td>
<td>191</td>
</tr>
<tr>
<td>Fig. 2.17:</td>
<td>Structure of compound 28</td>
<td>186</td>
</tr>
<tr>
<td>Fig. 2.18:</td>
<td>IR spectrum of 19α-hydroxyasiatic acid (29) in KBr</td>
<td>195</td>
</tr>
<tr>
<td>Fig. 2.19:</td>
<td>1H-NMR spectrum of 19α-hydroxyasiatic acid (29) in C$_5$D$_3$N</td>
<td>196</td>
</tr>
<tr>
<td>Fig. 2.19a:</td>
<td>1H-NMR spectrum (expanded) of 19α-hydroxyasiatic acid (29) in C$_5$D$_3$N</td>
<td>197</td>
</tr>
<tr>
<td>Fig. 2.19b:</td>
<td>1H-NMR spectrum (expanded) of 19α-hydroxyasiatic acid (29) in C$_5$D$_3$N</td>
<td>198</td>
</tr>
</tbody>
</table>
Fig. 2.19c: 1H-NMR spectrum (expanded) of 19α-hydroxyasaiatic acid (29) in C$_5$D$_5$N

Fig. 2.20: 13C-NMR spectrum of 19α-hydroxyasaiatic acid (29) in C$_5$D$_5$N

Fig. 2.20a: 13C-NMR spectrum (expanded) of 19α-hydroxyasaiatic acid (29) in C$_5$D$_5$N

Fig. 2.20b: 13C-NMR spectrum (expanded) of 19α-hydroxyasaiatic acid (29) in C$_5$D$_5$N

Fig. 2.20c: 13C-NMR spectrum (expanded) of 19α-hydroxyasaiatic acid (29) in C$_5$D$_5$N

Fig. 2.21: ESI-MS of 19α-hydroxyasaiatic acid (29)

Fig. 2.22: Structure of 19α-hydroxyasaiatic acid (29)

Fig. 3.1: Tautomeric isomers of β-hydroxy chalcone

Fig. 3.2: UV spectrum of compound 111 in MeOH

Fig. 3.3: IR spectrum of compound 111 in KBr

Fig. 3.4: 1H-NMR spectrum of compound 111 in CDCl$_3$

Fig. 3.4a: 1H-NMR spectrum (expanded) of compound 111 in CDCl$_3$

Fig. 3.5: Keto-enol isomeric forms of 111

Fig. 3.6: 13C-NMR spectrum of compound 111 in CDCl$_3$

Fig. 3.6a: 13C-NMR spectrum (expanded) of compound 111 in CDCl$_3$

Fig. 3.6b: 13C-DEPT NMR spectrum of compound 111 in CDCl$_3$

Fig. 3.7: Structures of compounds 111 – 113 and selected HMBC and NOESY correlations in 111

Natural Products Chemistry
<p>| Fig. 3.8: | HMBC spectrum of compound 111 in CDCl₃ | 248 |
| Fig. 3.8a: | HMBC spectrum (expanded) of compound 111 in CDCl₃ | 249 |
| Fig. 3.9: | ESI-TOF-MS of compound 111 | 250 |
| Fig. 3.10: | UV spectrum of compound 114 in MeOH | 255 |
| Fig. 3.11: | IR spectrum of compound 114 in KBr | 256 |
| Fig. 3.12: | ¹H-NMR spectrum of compound 114 in DMSO-₅ | 257 |
| Fig. 3.12a: | ¹H-NMR spectrum (expanded) of compound 114 in DMSO-₅ | 258 |
| Fig. 3.13: | ¹³C-NMR spectrum of compound 114 in DMSO-₅ | 259 |
| Fig. 3.13a: | ¹³C-DEPT NMR spectrum of compound 114 in DMSO-₅ | 260 |
| Fig. 3.14: | FAB-MS of compound 114 | 261 |
| Fig. 3.15: | HMBC spectrum of compound 114 in DMSO-₅ | 262 |
| Fig. 3.16: | Structure of compound 114 and its selected NOESY and HMBC correlations | 254 |
| Fig. 3.17: | CD spectrum of compound 114 in MeOH | 263 |
| Fig. 4.1: | IR spectrum of scopoletin (312) in KBr | 349 |
| Fig. 4.2: | ¹H-NMR spectrum of scopoletin (312) in DMSO-₅ | 350 |
| Fig. 4.2a: | ¹H-NMR spectrum (expanded) of scopoletin (312) in DMSO-₅ | 351 |
| Fig. 4.3: | Structure of scopoletin and its selected NOE interactions | 348 |
| Fig. 4.4: | ¹³C-NMR spectrum of scopoletin (312) in DMSO-₅ | 352 |
| Fig. 4.4a: | ¹³C-DEPT NMR spectrum of scopoletin (312) in DMSO-₅ | 353 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 4.5:</td>
<td>FAB-MS of scopoletin (312)</td>
</tr>
<tr>
<td>Fig. 4.6:</td>
<td>Cornish-Bowden plot showing inhibition of furin activity by MCD-1 (scopoletin) as measured with three different concentrations of substrate Boc-RVRR-MCA</td>
</tr>
<tr>
<td>Fig. 4.7:</td>
<td>Determination of IC$_{50}$ values for inhibition of furin activity by MCD-1 (scopoletin) using three different concentrations of substrate Boc-RVRR-MCA</td>
</tr>
<tr>
<td>Fig. 4.8:</td>
<td>Progress curve assay showing inhibition of furin activity by MCD-1 (scopoletin) using Boc-RVRR-MCA as substrate (50 mM) concentration. (B) Michaelis–Menten curve showing the release of fluorescence upon cleavage by furin of various concentrations of fluorogenic substrate Boc-RVRRMCA</td>
</tr>
<tr>
<td>Fig. 4.9:</td>
<td>UV spectrum of quercetin-3-O-rutinoside (135) in MeOH</td>
</tr>
<tr>
<td>Fig. 4.10:</td>
<td>IR spectrum of quercetin-3-O-rutinoside (135) in KBr</td>
</tr>
<tr>
<td>Fig. 4.11:</td>
<td>1H-NMR spectrum of quercetin-3-O-rutinoside (135) in DMSO-d_6</td>
</tr>
<tr>
<td>Fig. 4.11a:</td>
<td>1H-NMR spectrum (expanded) of quercetin-3-O-rutinoside (135) in DMSO-d_6</td>
</tr>
<tr>
<td>Fig. 4.11b:</td>
<td>1H-NMR spectrum(expanded) of quercetin-3-O-rutinoside (135) in DMSO-d_6</td>
</tr>
<tr>
<td>Fig. 4.12:</td>
<td>13C-NMR spectrum of quercetin-3-O-rutinoside (135) in DMSO-d_6</td>
</tr>
<tr>
<td>Fig. 4.12a:</td>
<td>13C-NMR spectrum (expanded) of quercetin-3-O-rutinoside (135) in DMSO-d_6</td>
</tr>
<tr>
<td>THESIS</td>
<td>CONTENTS</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Fig. 4.12b:</td>
<td>13C-DEPT NMR spectrum of quercetin-3-\textit{O}-rutinoside (135) in DMSO-d_6</td>
</tr>
<tr>
<td>Fig. 4.13:</td>
<td>ESI-TOF-MS of rutin (135)</td>
</tr>
<tr>
<td>Fig. 4.14:</td>
<td>Structure of quercetin-3-\textit{O}-rutinoside (135)</td>
</tr>
</tbody>
</table>