<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>M–H Curve of a ferromagnetic material</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Types of magnetism (a) Paramagnetism (b) Ferromagnetism (c) Antiferromagnetism (d) Ferrimagnetism</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Illustration of the variation coercivity as function of particle size</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Input–output power relationship of an ideal optical limiter</td>
<td>18</td>
</tr>
<tr>
<td>Figure 1.5(a)</td>
<td>Tetrahedral co-ordination</td>
<td>25</td>
</tr>
<tr>
<td>Figure 1.5(b)</td>
<td>Octahedral co-ordination</td>
<td>25</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Crystal structure of spinel ferrites</td>
<td>26</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>Magnetic spinel ferrite structure</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Illustration of Top Down approach and Bottom Up approach</td>
<td>57</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Schematic representation of an X-ray Diffractometer</td>
<td>59</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Schematic illustration of a Scanning Electron Microscope (SEM)</td>
<td>66</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Schematic diagram of a Transmission Electron Microscope (TEM)</td>
<td>67</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Schematic representation of a WD-XRF</td>
<td>68</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Illustration of an FTIR</td>
<td>70</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Schematic representation of a UV-Vis Spectrophotometer</td>
<td>72</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Block Illustration of a Vibrating Sample Magnetometer</td>
<td>74</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>DC resistivity measurement set up</td>
<td>75</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Wayner Kerr Impedance Analyzer (6500B)</td>
<td>77</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Schematic representation of a z-scan Setup</td>
<td>81</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Phase Contract Microscope</td>
<td>84</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Hemocytometer</td>
<td>86</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>Schematic representation of counting the cells by a hemocytometer</td>
<td>87</td>
</tr>
</tbody>
</table>
Figure 3.1: TGA/DTA curve of ZnFe$_2$O$_4$ 101
Figure 3.2: XRD patterns of Zinc ferrite samples sintered at different temperatures... 98
Figure 3.3: Rietveld refinement plots for samples (a) ZF0, b) ZF400, (c) ZF600 ... 99
Figure 3.4 (a) – (c): Representative Hall–Williamson plots of zinc ferrite ----- 100
Figure 3.5 (a) & (b): TEM image and particle size distribution histogram of ZF0---102
Figure 3.5 (c) & (d): TEM image and particle size distribution histogram of ZF400- 102
Figure 3.5 (e) & (f): TEM image and particle size distribution histogram of ZF600 - 102
Figure 3.6: Dielectric permittivity as a function of log (f) of zinc ferrites sintered at different temperatures --------------- 104
Figure 3.7: Frequency dependence of AC conductivity 105
Figure 3.8: Dielectric permittivity as a function of temperature at a selected frequency, for ZF400 107
Figure 3.9: Relation between AC conductivity and absolute temperature-108
Figure 3.10: Variation of AC dielectric constant of ZnFe$_2$O$_4$ with sintering temperature at selected frequency 109
Figure 3.11: Variation of AC conductivity of ZnFe$_2$O$_4$ with sintering temperature at selected frequency 110
Figure 4.1: XRD patterns of ZnFe$_{2-x}$Gd$_x$O$_4$... 118
Figure 4.2: Rietveld plot of ZnFe$_{1.95}$Gd$_{0.05}$O$_4$ 119
Figure 4.3 (a): TEM image of ZnFe$_2$O$_4$ and its particle size distribution histogram.. 120
Figure 4.3 (b): TEM image of ZnFe$_{1.85}$Gd$_{0.15}$O$_4$ and its particle size distribution histogram................................. 120
Figure 4.4: Magnetic hysteresis loops of ZnFe$_{2-x}$Gd$_x$O$_4$ series ------- 122
Figure 4.5: Dielectric permittivity as a function of log f for ZnFe$_{2-x}$Gd$_x$O$_4$... 124
Figure 4.6: Dielectric permittivity as a function of temperature at selected frequency for the sample with x = 0.05 125
Figure 4.7: Dielectric permittivity as a function of rare-earth content at selected frequencies......................... 126
Figure 4.8: Frequency dependence of AC conductivity in Gd$^{3+}$ ion substituted zinc ferrite system

Figure 4.9: Relation between AC conductivity and absolute temperature for x = 0.05

Figure 4.10: Variation of AC conductivity with composition (x) at selected frequencies

Figure 4.11: Relation between DC resistivity and absolute temperature for ZnFe$_{2-x}$Gd$_x$O$_4$ system

Figure 5.1: (a) The X-Ray diffraction pattern of Mg$_{0.75}$Zn$_{0.25}$Fe$_{2-x}$Gd$_x$O$_4$ series (b) Rietveld plot of Mg$_{0.75}$Zn$_{0.25}$Fe$_{2}$O$_4$

Figure 5.2: (a) Transmission Electron Microscope image of Mg$_{0.75}$Zn$_{0.25}$Fe$_{1.85}$Gd$_{0.15}$O$_4$ (b) The size distribution histogram of the nanoparticles from TEM images for Mg$_{0.75}$Zn$_{0.25}$Fe$_{1.85}$Gd$_{0.15}$O$_4$

Figure 5.3: Magnetic curves of Mg$_{0.75}$Zn$_{0.25}$Fe$_{2}$Gd$_x$O$_4$ system

Figure 5.4: Variation in DC resistivity and absolute temperature for Mg$_{0.75}$Zn$_{0.25}$Fe$_{2-x}$Gd$_x$O$_4$ series

Figure 5.5: Dielectric permittivity as a function of log (f) for Mg$_{0.75}$Zn$_{0.25}$Fe$_{2-x}$Gd$_x$O$_4$ system

Figure 5.6: The variation of real part of dielectric constant with temperature for the sample with x = 0.1 at selected frequencies

Figure 5.7: Dependence of real part of dielectric constant on Gd$^{3+}$ ion concentration

Figure 5.8: Variation of dielectric loss with frequency

Figure 5.9: Frequency dependence of AC conductivity for the sample

Figure 5.10: The relation between AC conductivity and absolute temperature for selected frequencies

Figure 5.11: Variation of AC conductivity with gadolinium content

Figure 6.1: (a) XRD patterns for all the samples of the series Mg$_{1.5}$Zn$_{0.5}$Fe$_{2}$O$_4$ (b) Rietveld plot of MgFe$_2$O$_4$

Figure 6.2: The M-H curve of Mg-Zn series

Figure 6.3: The variation of dielectric constant with frequency at room temperature
Figure 6.4: Variation of AC conductivity with frequency 166
Figure 6.5: Tauc plots for the Mg-Zn mixed series 167
Figure 6.6: Optical limiting curves for Mg–Zn series (a) MgFe$_2$O$_4$ (b) Mg$_{0.75}$Zn$_{0.25}$Fe$_2$O$_4$ (c) Mg$_{0.25}$Zn$_{0.75}$Fe$_2$O$_4$ (d) ZnFe$_2$O$_4$ for input pulse energy of 100 μJ. Inset shows the corresponding open aperture z-scan curves. Solid lines represent the numerical fits while the circular points represent the measured data points 169
Figure 7.1: (a) XRD patterns for all the samples of the series ZnCr$_{2-x}$Fe$_x$O$_4$ (b) Rietveld plot of ZnFeCrO$_4$ 179
Figure 7.2: (a): TEM images and particle size distribution histogram of samples with $x = 1.00$ 181
Figure 7.2: (b): TEM images and particle size distribution histogram of samples with $x = 2.00$ 182
Figure 7.3: SEM images of zinc chromium mixed ferrite with (a) $x = 1.00$, and (b) $x = 2.00$ 182
Figure 7.4: The M–H curve of ZnCr$_{2-x}$Fe$_x$O$_4$ System 183
Figure 7.5: FC and ZFC Curves for ZnFe$_2$O$_4$ 184
Figure 7.6: M–H curve for ZnFe$_2$O$_4$ at 50K 185
Figure 7.7: Tauc plots for the ZnCr$_{2-x}$Fe$_x$O$_4$ system 185
Figure 7.8: Optical limiting curves for ZnCr$_{2-x}$Fe$_x$O$_4$ series (a) pure ethylene glycol (b) ZnCr$_2$O$_4$ (c) ZnFeCrO$_4$ (d) ZnFe$_2$O$_4$ at input pulse energy of 100 μJ. Inset shows the corresponding open aperture z-scan curves. Solid lines represent the numerical fits and circular dots the measured data points 187
Figure 8.1: Experimental setup for algae cultivation 198
Figure 8.2: (a) XRD patterns of zinc ferrite sintered at different temperatures (b) Rietveld plot of Zn$_2$Fe$_2$O$_4$ fired at 600°C 199
Figure 8.3: (a) & (b) TEM images and particle size distribution of ZF0, (c) & (d) TEM images and particle size distribution of ZF800 200
Figure 8.4: FTIR spectrum of (a) ZF0 & (b) ZF400 202
Figure 8.5: Room temperature M–H curves of zinc ferrite, sintered at different temperature 202
Figure 8.6: Chlorophyll a content in the cells of *Chlorella pyrenoidosa* in cultures containing different concentrations of ZnFe$_2$O$_4$. Values are reported as mean of three replicates ± standard deviation (SD) 204
Figure 8.7: Chlorophyll \(a \) content in the cells of \textit{Chlorella pyrenoidosa}, \textit{H. Chick} in cultures containing different particle size of \(\text{ZnFe}_2\text{O}_4 \). Values are reported as mean of three replicates ± standard deviation (SD) \-------------------\ 205

Figure 8.8: (a) Cell count of \textit{Chlorella pyrenoidosa}, \textit{H. Chick} in cultures containing different concentrations of \(\text{ZnFe}_2\text{O}_4 \) nanoparticles for a culture period of 14 days. (b) Variation of growth rate with different concentrations of zinc ferrite \---\ 206

Figure 8.9: Cell count of \textit{Chlorella pyrenoidosa}, \textit{H. Chick} in cultures containing \(\text{ZnFe}_2\text{O}_4 \) nanoparticles of different particle size. (b) Variation of growth rate with particle size of zinc ferrite \---\ 207

Figure 8.10: (a) Phase contrast microscope image of algal cells in the control (b). The cells and cell debris observed in the culture solution with 0.2\(\mu \)M concentration of \(\text{ZnFe}_2\text{O}_4 \) nano particles (c) SEM images of algal cells in the control culture (d) SEM image of algal cells treated with un-sintered zinc ferrite sample (sample with the lowest crystallite size) that is \(\text{ZF}0 \) \-------------------\ 209

Figure 9.1: Experimental setup \---\ 217

Figure 9.2: (a) XRD Pattern of \(\text{Zn}_{1-x}\text{Co}_x\text{Fe}_2\text{O}_4 \) Series (b) Rietveld plot of \(\text{Zn}_2\text{Fe}_2\text{O}_4 \) \---\ 218

Figure 9.3: Chlorophyll \(a \) content in the cells of \textit{Chlorella pyrenoidosa}, \textit{H. Chick} in cultures containing \(\text{Zn}_{1-x}\text{Co}_x\text{Fe}_2\text{O}_4 \) nanoparticles. Values are reported as mean of three replicates ± standard deviation (SD) \------\ 220

Figure 9.4: Cell count of \textit{Chlorella pyrenoidosa}, \textit{H. Chick} in cultures containing \(\text{Zn}_{1-x}\text{Co}_x\text{Fe}_2\text{O}_4 \) nanoparticles. Values are reported as mean of three replicates ± standard deviation (SD) \--\ 222

Figure 9.5: SEM image of (a) \(\text{ZnFe}_2\text{O}_4 \) nanoparticles (b) algal cells with \(\text{ZnFe}_2\text{O}_4 \) nanoparticles \textit{arrow mark} indicates the nanoparticles (c) algal cell culture in the absence of nanoparticles (control), inset shows an enlarged \textit{Chlorella pyrenoidosa}, \textit{H. Chick} cell (d) algal cell culture in the presence of \(\text{CoFe}_2\text{O}_4 \) nanoparticles; inset shows ruptured \textit{Chlorella pyrenoidosa}, \textit{H. Chick} cells\------\ 224

Figure 9.6: Room temperature hysteresis curves of \(\text{Zn}_{1-x}\text{Co}_x\text{Fe}_2\text{O}_4 \) \---\ 225