LIST OF FIGURES

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>INTRODUCTION</th>
<th>Pg. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>(A) and (B) illustrate the process of Osmosis, (C) Reverse Osmosis</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>Pictorial diagram of water treatment through membrane filtration</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 1.3</td>
<td>Distinction between physical and chemical adsorption process</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>LITERATURE SURVEY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.1</td>
<td>Effect of cutting fluid on the height of micro-irregularities on the machined surface</td>
<td>41</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Effect of cutting fluid on the chip contraction</td>
<td>41</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Dependence of force F_Z on the uncut chip thickness in machining steel 20, at $v = 6.5$ m/min with the application of various cutting fluid</td>
<td>42</td>
</tr>
<tr>
<td>Fig. 2.4</td>
<td>Relationship between tool face wear and time of operation: 1- Dry; 2- using emulsion cutting fluid</td>
<td>42</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>Effect of various types of cutting fluid on drill life</td>
<td>43</td>
</tr>
<tr>
<td>Fig. 2.6</td>
<td>Effect of various types of cutting fluid on the cutting speed / tool life</td>
<td>43</td>
</tr>
<tr>
<td>Fig. 2.7</td>
<td>Effect of types of lubricant on the cutting speed/tool life relationship for the turning operation</td>
<td>44</td>
</tr>
<tr>
<td>Fig. 2.8</td>
<td>Effect of types of lubricant on the cutting speed/tool life relationship obtained when turning steel</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>RESEARCH METHODOLOGY / MATERIAL AND METHODS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 3.1</td>
<td>X-Ray diffraction pattern of PGAC</td>
<td>71</td>
</tr>
<tr>
<td>Fig 3.2</td>
<td>X-Ray diffraction pattern of metal PSAC</td>
<td>72</td>
</tr>
<tr>
<td>Fig 3.3</td>
<td>X-Ray diffraction pattern of DMAC</td>
<td>73</td>
</tr>
<tr>
<td>Fig 3.4</td>
<td>X-Ray diffraction pattern of metal cutting oil loaded PGAC</td>
<td>74</td>
</tr>
<tr>
<td>Fig 3.5</td>
<td>X-Ray diffraction pattern of metal cutting oil loaded PSAC</td>
<td>74</td>
</tr>
<tr>
<td>Fig 3.6</td>
<td>X-Ray diffraction pattern of metal cutting oil loaded DMAC</td>
<td>75</td>
</tr>
<tr>
<td>Fig 3.7</td>
<td>FTIR Spectrum of raw Pomegranate Peel of particle size 100µm</td>
<td>77</td>
</tr>
<tr>
<td>Fig 3.8</td>
<td>FTIR Spectrum of Pomegranate peel Activated Carbon</td>
<td>78</td>
</tr>
<tr>
<td>Fig 3.9</td>
<td>FTIR Spectrum of PSAC adsorbent</td>
<td>78</td>
</tr>
<tr>
<td>Fig 3.10</td>
<td>FTIR Spectrum of DMAC adsorbent</td>
<td>79</td>
</tr>
<tr>
<td>Fig 3.11</td>
<td>FTIR of metal cutting oil loaded PGAC adsorbent</td>
<td>79</td>
</tr>
<tr>
<td>Fig 3.12</td>
<td>FTIR of metal cutting oil loaded PSAC adsorbent</td>
<td>80</td>
</tr>
<tr>
<td>Fig 3.13</td>
<td>FTIR of metal cutting oil loaded DMAC adsorbent</td>
<td>81</td>
</tr>
<tr>
<td>Fig 3.14</td>
<td>SEM image of PGAC adsorbent</td>
<td>82</td>
</tr>
<tr>
<td>Fig 3.15</td>
<td>SEM image of PSAC adsorbent</td>
<td>83</td>
</tr>
<tr>
<td>Fig 3.16</td>
<td>SEM image of DMAC adsorbent</td>
<td>84</td>
</tr>
<tr>
<td>Fig 3.17</td>
<td>SEM image of PGAC with adsorbed metal cutting oil</td>
<td>85</td>
</tr>
<tr>
<td>Fig 3.18</td>
<td>SEM image of PSAC with adsorbed metal cutting oil</td>
<td>86</td>
</tr>
<tr>
<td>Fig 3.19</td>
<td>SEM image of DMAC with adsorbed metal cutting oil</td>
<td>87</td>
</tr>
<tr>
<td>Fig 3.20</td>
<td>Different pattern of continuous adsorption process for wastewater</td>
<td>89</td>
</tr>
<tr>
<td>Fig 3.21</td>
<td>Flow diagram of Continuous adsorption process within the fixed bed column</td>
<td>91</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Fig 3.22</td>
<td>Flow diagram of experimental set up of fixed bed adsorption system</td>
<td>92</td>
</tr>
</tbody>
</table>

Chapter 4 RESULT AND DISCUSSION

Fig 4.1	(a) & (b) Column hold up and breakthrough curve for the adsorption of metal cutting oil on PGAC at initial conc. Co=0.5% with bed height H=35mm and flow rate D=50ml/min.	97
Fig 4.2	(a) & (b) Column hold up and breakthrough curve for the adsorption of metal cutting oil on PSAC at initial conc. Co=1.5% with bed height H=92mm and flow rate D=35ml/min.	98
Fig 4.3	(a) & (b). Column hold up and breakthrough curve for the adsorption of metal cutting oil on DMAC at initial conc. Co=1.0% with bed height H=92mm and flow rate D=35ml/min.	98
Fig 4.4	Effect of varying concentration of metal cutting O/W emulsion at a fixed flow rate D=25ml/min, bed length H of PGAC adsorbent=35mm and T=25ºC.	104
Fig 4.5	Effect of varying adsorbent amount (column/ bed length H of PGAC adsorbent) of metal cutting O/W emulsion at a fixed influent concentration C_o= 0.5%, flow rate D=25ml/min. and T=25ºC.	104
Fig 4.6	Effect of varying flow rate of O/W emulsion on the adsorption of metal cutting oil on PGAC adsorbent at a fixed influent concentration C_o= 0.5%, H=35mm and T=25ºC.	105
Fig 4.7	Effect of varying concentration of metal cutting O/W emulsion at a fixed flow rate D=35ml/min, bed length H of PSAC adsorbent=40mm and T=25ºC.	106
Fig 4.8	Effect of varying adsorbent amount (column/ bed length H of PSAC adsorbent) of metal cutting O/W emulsion at a fixed influent concentration C_o= 1.5%, flow rate D=35ml/min. and T=25ºC.	107
Fig 4.9	Effect of varying flow rate of O/W emulsion on the adsorption of metal cutting oil on PSAC adsorbent at a fixed influent concentration C_o= 1.5%, H=40mm and T=25ºC.	108
Fig 4.10	Effect of varying concentration of metal cutting O/W emulsion at a fixed flow rate D=35ml/min, bed length H of PSAC adsorbent=92mm and T=25ºC.	109
Fig 4.11	Effect of varying adsorbent amount (column/ bed length H of DMAC adsorbent) of metal cutting O/W emulsion at a fixed influent concentration C_o= 1.0%, flow rate D=35ml/min. and T=25ºC.	110
Fig 4.12	Effect of varying flow rate of O/W emulsion on the adsorption of metal cutting oil on DMAC adsorbent at a fixed influent concentration C_o= 1.0%, H=40mm and T=25ºC.	111
Fig 4.12(a)	Effect of pH on sorption capacity of adsorbents PGAC, PSAC and DMAC at influent concentration C_o= 1% of metal cutting oil	112
FIG 4.13	Langmuir isotherm for PGAC-metal cutting oil system	116
FIG 4.14	Langmuir isotherm for PSAC-metal cutting oil system	116
FIG 4.15	Langmuir isotherm for DMAC-metal cutting oil system	117
FIG 4.16	Freundlich isotherm for PGAC-metal cutting oil system	118
FIG 4.17	Freundlich isotherm for PSAC-metal cutting oil system	119
FIG 4.18	Freundlich isotherm for DMAC-metal cutting oil system	120
FIG 4.19	Breakthrough curves of adsorption of metal cutting fluids onto the adsorbents (PGAC, PSAC, DMAC) at oil/water emulsion concentration Co=1%, column bed height H=40mm with emulsion flow rate D=35ml/min. at pH 8 and T=25ºC	122
FIG 4.20	Thermal gravimetric analysis of the Pumpkin seed waste activated carbon (PSAC) before adsorption	125
FIG 4.21	Thermal gravimetric analysis of the Pumpkin seed waste activated carbon (PSAC) after adsorption of metal cutting oil	125
FIG 4.22	(a) Plots of Coats and Redfern Method for PSAC before adsorption in first zone of temperature 30º-100ºC. (b) Plots of Coats and Redfern Method for PSAC before adsorption in next zone of temperature 380º-980ºC	128 129
FIG 4.23	(a) Plots of Coats and Redfern Method for PSAC after adsorption in first zone of temperature 30º-100ºC. (b) Plots of Coats and Redfern Method for PSAC after adsorption in next zone of temperature 250º-980ºC.	129 130