LIST OF TABLES

Table 2.1: Reported performance of GSAHC ... 45
Table 2.2: Experimental details of glazed air heating collectors 46
Table 4.1: Elevation and Azimuth angle from sunrise to sunset for 20th May 89
Table 4.2: Values adopted for the CPSAH ... 92
Table 5.1: Summary of experimental results for CPSA at 0.012 kg/s/m2 109
Table 5.2: Summary of experimental results for CPSA at 0.016 kg/s/m2 112
Table 6.1: Average fuel cost and emission factors ... 145
Table 6.2: Yearly energy output and avoided emission kg CO\textsubscript{2} 145
LIST OF FIGURES

Figure 1.1 Solar insolation map of the India (Source: TERI) 8
Figure 2.1 Average number of reflections for CPC. (Rabl 1976) 13
Figure 2.2 Reflector/Aperture ratio for full and truncated CPC. (Rabl 1976) 14
Figure 2.3 Height/Aperture ratios for full and truncated CPC. (Rabl 1976) 15
Figure 2.4 Four different absorber configurations of the CPC (a) flat absorber (b) fin absorber (c) wedge absorber (d) tubular absorber .. 16
Figure 2.5 Operational limit of CPC under two phase flow 17
Figure 2.6 Correlation of Nusselt and Grashofs number for evaluation of convective heat transfer coefficient ... 19
Figure 2.7 CPC used in situ steam generation ... 20
Figure 2.8 Structure of novel optical transceiver with CPC 21
Figure 2.9 Comparison between CPC and ball lens transceiver as a function of distance and photocurrent ... 21
Figure 2.10 Sketch of new troughlike concept with acceptance angle of 15 degree .. 22
Figure 2.11 New design of annular CPC ... 23
Figure 2.12 Schematic diagram of CPC ... 24
Figure 2.13 Experimental setup of the 3D CPC with spherical absorber 25
Figure 2.14 3-D drawing of novel design of multiple curved surfaces CPC 26
Figure 2.15 Experimental set up of CPC ... 26
Figure 2.16 3-D sketch of solar cooker with CPC .. 27
Figure 2.17 CPC for use of water disinfection .. 28
Figure 2.18 (a) 3 D Profile of CCPC (b) 3 D crossed 9x9 CPC 29
Figure 2.19 3-D sketch of CPC for neutron spectroscopy 30
Figure 2.20 (a) Lens walled (b) Mirror CPC ... 31
Figure 2.21 Experiment of CPC during laboratory ... 31
Figure 2.22 3-D CCPC and 2-D CPC ... 32
Figure 2.23 Schematic diagram of CPC heater tube ... 36
Figure 2.24 Experimental set up of evacuated heat pipes integrated CPC for solar water heating purpose ... 39
Figure 2.25 Experimental model of evacuated heat pipes integrated CPC for adsorption refrigeration purpose ... 39
Figure 2.26 Test set-up of CPC ... 40
Figure 2.27 Line diagram of CPC with polygonal aperture 41
Figure 2.28 (a) Schematic (b) Experimental set up on CPC with evacuated tube 42
Figure 2.29 Experimental set up of CPC for application of exergy efficiency during cloudy conditions ... 43
Figure 6.13 Correlation model for air outlet temperature at 0.016 kg/s/m2 133
Figure 6.14 Correlation model for thermal efficiency at 0.016 kg/s/m2 133
Figure 6.15 Effect of mass flow rate on outlet air temperature of the CPSAH 134
Figure 6.16 Rise of air temperature against various mass flow rate 135
Figure 6.17 Effect of mass flow rate on the temperature by the collector length 136
Figure 6.18 Effect of collector length on thermal efficiency of the CPSAH 137
Figure 6.19 Outlet air temperatures at various inlet temperatures for 0.012 kg/s/m2 .. 137
Figure 6.20 Outlet air temperatures at various inlet temperatures for 0.016 kg/s/m2 .. 138
Figure 6.21 Thermal efficiency at various inlet temperature for 0.012 kg/s/m2 138
Figure 6.22 Thermal efficiency at various inlet temperature for 0.016 kg/s/m2 139
Figure 6.23 Outlet temperature at some days for 0.012 kg/s/m2 139
Figure 6.24 Outlet temperature at some days for 0.016 kg/s/m2 140
Figure 6.25 Thermal efficiency at some days for 0.012 kg/s/m2 141
Figure 6.26 Thermal efficiency at some days for 0.016 kg/s/m2 141
Figure 6.27 Solar radiation at mean day of the month ... 142
Figure 6.28 Monthly average daily insolation and energy output of CPSAH for 0.012 kg/s/m2 .. 143
Figure 6.29 Monthly average daily insolation and energy output for CPSAH of 0.016 kg/s/m2 .. 144
LIST OF SYMBOLS

\(\theta \) Incident angle
\(\theta_a \) Half acceptance angle of CPC
\(\theta_z \) Zenith angle
\(\beta \) Slope of the plane surface with horizontal
\(\nu \) Surface azimuth angle
\(\delta \) Declination
\(\phi \) Latitude of the location
\(\omega_h \) Sunset or sunrise hour angle
\(\rho \) Reflectivity
\(\tau \) Transmissivity
\(\alpha \) Absorptivity
\(\alpha_a \) Solar altitude angle, absorptivity of cover
\(\alpha_v \) Solar elevation angle
\(\varepsilon \) Emissivity
\(\sigma \) Stefan-Boltzmann constant, W/m\(^2\)-K\(^4\)
\(\mu \) Absolute viscosity
\(\eta \) Thermal efficiency of the collector
\(\eta_o \) Optical efficiency of the collector
\(a \) aperture, cover
\(b \) ambient
\(c \) cover
\(d \) daily
\(f \) fluid
\(o \) outlet
\(s \) sky
\(r \) receiver, flat one-sided absorber
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC</td>
<td>Compound Parabolic Collector</td>
</tr>
<tr>
<td>CPSC</td>
<td>Compound Parabolic Solar Collector</td>
</tr>
<tr>
<td>CPSAH</td>
<td>Compound Parabolic Solar Air Heating Collector</td>
</tr>
<tr>
<td>DSAHC</td>
<td>Double-pass Solar Air Heating Collector</td>
</tr>
<tr>
<td>ETC</td>
<td>Evacuated Tube Collector</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FPC</td>
<td>Flat Plate Collector</td>
</tr>
<tr>
<td>GSAHC</td>
<td>Glazed Solar Air Heating Collector</td>
</tr>
<tr>
<td>GHG</td>
<td>Green House Gas</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>RE</td>
<td>Renewable Energy</td>
</tr>
<tr>
<td>RET</td>
<td>Renewable Energy Technology</td>
</tr>
<tr>
<td>RES</td>
<td>Renewable Energy Sources</td>
</tr>
<tr>
<td>SSAHC</td>
<td>Single-Pass Solar Air Heating Collector</td>
</tr>
<tr>
<td>USAHC</td>
<td>Unglazed Solar Air Heating Collector</td>
</tr>
</tbody>
</table>
NOMENCLATURE

- **A_a**: Total aperture area (m²)
- **A_r**: Total receiver area (m²)
- **C_a**: Concentration ratio
- **C_p**: Specific heat of air (J/kg-K)
- **D_H**: Hydraulic Diameter
- **F_r**: Heat removal factor
- **F'**: Collector efficiency factor
- **g**: Gap size
- **H**: Height of the collector
- **h_d**: Height of the duct
- **H_b**: Incident beam solar radiation (W/m²)
- **H_d**: Incident diffuse solar radiation (W/m²)
- **H_t**: Total solar radiation on the aperture (W/m²)
- **h_c/a**: Convection heat transfer coefficient from cover to ambient (W/m²-K)
- **h_c/c**: Convection heat transfer coefficient from receiver to cover (W/m²-K)
- **h_Rr**: Radiative heat transfer coefficient from receiver to cover (W/m²-K)
- **h_Rs**: Radiative heat transfer coefficient from cover to sky (W/m²-K)
- **k**: Thermal conductivity of absorber wall (W/m-K)
- **k_f**: Thermal conductivity of air (W/m-K)
- **L**: Collector length
- **m**: Mass flow rate of air (kg/s)
- **N_u**: Nusselt number
- **n**: Average number of reflections
- **P_r**: Prandtl number
- **Q_u**: Useful energy gain, W
- **R_e**: Reynolds number
- **T_b**: Ambient temperature (°C)
- **T_f**: Mean air temperature (°C)
- **T_in**: Inlet temperature of air (°C)
- **T_o**: Outlet temperature of air (°C)
- **T_r**: Temperature of receiver plate (°C)
- **T_s**: Sky temperature (°C)
- **U_L**: Overall heat loss coefficient (W/m²-K)
- **u**: Wind velocity (m/s)
- **W_a**: Aperture width for CPC
- **W_r**: Receiver width for CPC