Contents

Chapter I Introduction

1 A - Introduction to electrochemical supercapacitors

1.1.1 Introduction 01
1.1.2 Historical Background 01
1.1.3 Capacitors 03
1.1.3.1 Traditional Capacitors 04
 1.1.3.1.1 Energy Stored in Capacitor 06
 1.1.3.1.2 Charging and Discharging 06
1.1.3.2 Electrochemical Supercapacitors (ES) 07
 1.1.3.2.1 Electric Double Layer Supercapacitor (EDLS) 07
 1.1.3.2.2 Pseudocapacitors or Faradaic Supercapacitors 12
1.1.4 Schemes/phases of the proposed research work 18

1B - Review of Literature

1.2.1 Polyaniline 19
 1.2.1.1 Introduction 19
 1.2.1.2 Oxidation states of PANI 19
 1.2.1.3 Synthesis of PANI 20
 1.2.1.4 Protonation and Deprotonation of PANI 23
 1.2.1.5 Electrical conductivity 25
 1.2.1.6 Redox Reaction in PANI 26
1.2.2 Cobalt Hydroxide 27
 1.2.2.1 Introduction 27
 1.2.2.2 Synthesis of Co(OH)₂ 28
 1.2.2.3 Structure of cobalt hydroxide 29
 1.2.2.4 Redox reactions 29
1.2.3 Nickel Hydroxide 30
 1.2.3.1 Introduction 30
 1.2.3.2 Synthesis of Ni(OH)₂ 30
 1.2.3.3 Structure of Nickel Hydroxide 30
 1.2.3.4 Redox Reaction 31
1.2.4 Composites 31

1C – Experimental and characterization techniques

1.3.1 Introduction 32
1.3.2 Potentiostat 32
1.3.4 Galvanostat 32
1.3.5 Voltammetry 33
 1.3.5.1 Cyclic Voltammetry (CV) 33
1.3.6 Electrochemical Impedance Spectroscopy 34
1.3.7 X-Ray Diffraction 36
1.3.8 FESEM 39
1.3.9 EDX 39
Chapter II Supercapacitive properties of polyaniline-cobalt hydroxide hybrid nanocomposite electrodes

2.1 Introduction

2.2 Experimental section

2.2.1 Chemicals

2.2.2 Preparation of PANI electrode

2.2.3 Preparation of PANI+ Co(OH)₂HN and Co(OH)₂ electrodes

2.2.4 Characterization details

2.3 Results and Discussion

2.3.1 Reaction kinetics

2.3.2 Structural elucidation and compositional analyses

2.3.3 Surface morphology

2.3.4 Electrochemical measurements

2.3.4.1 Electrolytic effect

2.3.4.2 CVs and electro-activity measurements

2.3.4.3 Scan Rate Effect

2.3.4.4 Inner and outer charge contributions

2.3.4.5 Cyclic stability

2.3.4.6 Galvanostatic charge-discharge

Chapter III Supercapacitive properties of polyaniline-nickel hydroxide hybrid nanocomposite electrodes

3.1 Introduction

3.2 Experimental section

3.2.1 Materials

3.2.2 Preparation of PANI electrode

3.2.3 Preparation of PANI-Ni(OH)₂ NC electrode

3.2.4 Preparation of Ni(OH)₂ electrode

3.2.5 Characterization techniques

3.3 Results and Discussion

3.3.1 Reaction kinetics

3.3.2 Structural elucidation

3.3.3 Surface morphology

3.3.4 Chemical composition analysis

3.3.5 Electrochemical measurements

3.3.5.1 CVs and electro-active measurements

3.3.5.2 Scan rate effect

3.3.5.3 Inner and outer charge contribution

3.3.5.4 Cyclic Stability

3.3.5.5 Galvanostatic charge-discharge

3.3.5.6 Electrochemical impedance Spectroscopy

References
Chapter IV Supercapacitive properties of PANI, cobalt and nickel hydroxide hybrid nanocomposite electrodes

4.1 Introduction 102

4.2 Experimental Section 104
 4.2.1 Materials 104
 4.2.2 Preparation of PANI electrode 104
 4.2.3 Preparation of composite PANI, Co(OH)₂ and Ni(OH)₂ 105
 4.2.4 Preparation of Co(OH)₂ and Ni(OH)₂ 105
 4.2.5 Characterizations 105

4.3 Results and Discussions 105
 4.3.1 Reaction Kinetics 105
 4.3.2 Structure elucidation 106
 4.3.3 Elemental analysis 106
 4.3.4 Morphological evolution 107

4.3.5 Electrochemical properties 110
 4.3.5.1 CVs and electro-active measurements 110
 4.3.5.2 Scan rate effect 111
 4.3.5.3 Estimation of inner and outer charge contributions 116
 4.3.5.4 Cyclic stability 118
 4.3.5.5 Galvanostatic charge-discharge measurement 120
 4.3.5.6 Electrochemical impedance spectroscopy (EIS) 121

References 121

Conclusions 124