TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate’s Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xviii</td>
</tr>
<tr>
<td>List of Publications of the Candidate</td>
<td>xx</td>
</tr>
<tr>
<td>List of Abbreviations and Symbols Used</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION 1-29

1.1 Rationale 1
1.2 Antennas for Communication Applications 2
1.3 Antennas for Medical Applications 3
1.4 Limitations of Existing Antenna Systems 4
1.5 Motivation 5
1.6 Research Objectives 5
1.7 Meaning of Fractal Antennas 6
1.8 Extracts of Literature Survey on Fractal Antennas 7
1.9 Thesis Organization 26
1.10 Summary 28

CHAPTER 2 BIO - INSPIRED COMPUTING TECHNIQUES IN ANTENNA APPLICATIONS 30-66

vii
2.1 Bio - Inspired Computing Techniques 30
2.2 Artificial Neural Network (ANN) Applications to Antennas 31
 2.2.1 Microstrip Antenna Design using ANNs 32
 2.2.2 Resonant Frequency Calculation using ANNs 34
 2.2.3 ANNs for other Antenna Parameter Calculations 36
 2.2.4 Other Antenna Related Applications of ANNs 37
 2.2.5 ANNs in Antenna Arrays 39
2.3 Bio-Inspired Optimization Algorithms 40
 2.3.1 Genetic Algorithm (GA) 40
 2.3.2 Particle Swarm Optimization (PSO) Algorithm 41
 2.3.3 Bacterial Foraging Optimization (BFO) Algorithm 45
2.4 Hybrid Bio-Inspired Optimization Techniques 46
2.5 Applications of Optimization Techniques to Antennas 49
2.6 Limitations of Bio-inspired Computing Techniques to Antenna Applications 59
2.7 Bio-Inspired Optimization Techniques in Fractal Antennas 60
2.8 Summary 65

CHAPTER 3 DESIGN AND ANALYSIS OF FRACTAL ANTENNAS 67-109

3.1 Fractal Geometry and Fractal Antennas 67
3.2 Important Fractal Antennas and their Features 69
 3.2.1 Sierpinski Gasket Monopole Fractal (SGMF) Antenna 69
3.2.2 Sierpinski Carpet Fractal Antenna 71
3.2.3 Koch Curve Antenna 72
3.2.4 Hilbert Curve based Fractal Antennas 73
3.2.5 Hexagonal Fractal Antenna 74
3.2.6 Crown Square Fractal Antenna 75
3.2.7 Rectangular Sierpinski Carpet Fractal Antenna 75
3.2.8 Sierpinski-Koch Hybrid Fractal Antenna 76
3.2.9 H-Fractal Antenna 77

3.3 Fractal Antennas Developed in Present Research Work 78
3.3.1 Miniaturized Crown Rectangular Fractal (CRF) Antenna 78
3.3.2 Tapered CRF Antenna 84
3.3.3 Miniaturized Crown Circular Fractal (CCF) Antenna 87
3.3.4 Low Cost Miniaturized CCF Antenna 93
3.3.5 Multiband Miniaturized Split Ring Fractal (SRF) Antenna 94
3.3.6 Metamaterial Loaded SRF Antenna 99
3.3.7 Dual Band Crown Elliptical Fractal (CEF) Antenna 102
3.3.8 Dual Band Wearable Fractal Antenna 105

3.4 Summary 108

CHAPTER 4 DEVELOPMENT OF ANN MODELS FOR PARAMETER ESTIMATION OF FRACTAL ANTENNAS 110-151

4.1 Introduction 110
4.2 Development of ANN Models for Fractal Antennas

4.2.1 Multi Layer Perceptron Neural Networks (MLPNN)

4.2.2 Radial Basis Function Neural Networks (RBFNN)

4.2.3 General Regression Neural Networks (GRNN)

4.3 ANN Model for Analysis of SGMF Antenna

4.4 Design of Miniaturized CRF Antenna for ISM Band using RBFNN

4.5 Parameter Estimation of CRF Antenna using ANN Models

4.6 ANN Model for the Analysis of CEF Antenna

4.7 ANN Ensemble Models

4.8 ANN Ensemble Model for Tapered CRF Antenna

4.9 ANN Ensemble Model for CCF Antenna

4.10 GA based Selective ANN Ensemble Model for Low Cost CCF Antenna

4.11 Summary

CHAPTER 5 FRACTAL ANTENNA DESIGN USING BIO-INSPIRED OPTIMIZATION TECHNIQUES

5.1 Introduction

5.2 Design of SGMF Antenna using Bio–Inspired Computing Techniques

5.2.1 Parameters of the Proposed Optimization Models for SGMF Antenna
5.2.2 Results of the Proposed Optimization Models for SGMF Antenna

5.3 GA-ANN Hybrid Model for SGMF Antenna Design

5.4 BFO-RBFNN Hybrid Algorithm to Design A Miniaturized CRF Antenna for WLAN Applications

5.4.1 Experimental Results of Optimized CRF Antenna

5.5 BFO-ANN Ensemble Hybrid Algorithm to Design Tapered CRF Antenna for ISM Band Applications

5.5.1 Experimental Results of Tapered CRF Antenna

5.6 PSO-ANN Ensemble Hybrid Model to Design CCF Antenna for WLAN Applications

5.6.1 Experimental Results of CCF Antenna

5.7 GA-ANN Ensemble Hybrid Model to Design Low Cost CCF Antenna

5.8 GA-RBFNN Hybrid Algorithm for Estimation of Optimal Feed Point of Low Cost CCF Antenna

5.8.1 Experimental Results of Low Cost CCF Antenna

5.9 Summary

CHAPTER 6 CONCLUSION AND FUTURE SCOPE

6.1 Conclusion

6.2 Future Scope

REFERENCES